Suppr超能文献

相似文献

1
Perspectives on SARS-CoV-2 Main Protease Inhibitors.
J Med Chem. 2021 Dec 9;64(23):16922-16955. doi: 10.1021/acs.jmedchem.1c00409. Epub 2021 Nov 19.
3
SARS-CoV-2 M: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors.
Biomolecules. 2021 Apr 19;11(4):607. doi: 10.3390/biom11040607.
4
An Updated Review on SARS-CoV-2 Main Proteinase (M): Protein Structure and Small-Molecule Inhibitors.
Curr Top Med Chem. 2021;21(6):442-460. doi: 10.2174/1568026620666201207095117.
5
Non-peptidic inhibitors targeting SARS-CoV-2 main protease: A review.
Bioorg Chem. 2024 Jun;147:107380. doi: 10.1016/j.bioorg.2024.107380. Epub 2024 Apr 16.
6
Computational Selectivity Assessment of Protease Inhibitors against SARS-CoV-2.
Int J Mol Sci. 2021 Feb 19;22(4):2065. doi: 10.3390/ijms22042065.
8
Selection of SARS-CoV-2 main protease inhibitor using structure-based virtual screening.
Future Med Chem. 2022 Jan;14(2):61-79. doi: 10.4155/fmc-2020-0380. Epub 2021 Nov 24.
9
N-Terminal Finger Stabilizes the S1 Pocket for the Reversible Feline Drug GC376 in the SARS-CoV-2 M Dimer.
J Mol Biol. 2021 Jun 25;433(13):167003. doi: 10.1016/j.jmb.2021.167003. Epub 2021 Apr 22.

引用本文的文献

1
Mechanistic Insights into Nitrile and Alkyne Covalent Inhibitors of the SARS-CoV-2 Main Protease.
ACS Catal. 2025 Jan 17;15(2):1158-1169. doi: 10.1021/acscatal.4c06020. Epub 2025 Jan 5.
2
A Super-Resolution Spatial Atlas of SARS-CoV-2 Infection in Human Cells.
bioRxiv. 2025 Aug 18:2025.08.15.670620. doi: 10.1101/2025.08.15.670620.
5
Amino acid T25 in the substrate-binding domain of SARS-CoV-2 nsp5 is involved in viral replication in the mouse lung.
PLoS One. 2024 Dec 6;19(12):e0312800. doi: 10.1371/journal.pone.0312800. eCollection 2024.
6
EvoAI enables extreme compression and reconstruction of the protein sequence space.
Nat Methods. 2025 Jan;22(1):102-112. doi: 10.1038/s41592-024-02504-2. Epub 2024 Nov 11.
7
Breaking the Chain: Protease Inhibitors as Game Changers in Respiratory Viruses Management.
Int J Mol Sci. 2024 Jul 25;25(15):8105. doi: 10.3390/ijms25158105.
8
Development of an active-site titrant for SARS-CoV-2 main protease as an indispensable tool for evaluating enzyme kinetics.
Acta Pharm Sin B. 2024 May;14(5):2349-2357. doi: 10.1016/j.apsb.2024.03.001. Epub 2024 Mar 6.
9
Azapeptides with unique covalent warheads as SARS-CoV-2 main protease inhibitors.
Antiviral Res. 2024 May;225:105874. doi: 10.1016/j.antiviral.2024.105874. Epub 2024 Mar 28.
10
EvoAI enables extreme compression and reconstruction of the protein sequence space.
Res Sq. 2024 Feb 23:rs.3.rs-3930833. doi: 10.21203/rs.3.rs-3930833/v1.

本文引用的文献

1
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.
2
An oral SARS-CoV-2 M inhibitor clinical candidate for the treatment of COVID-19.
Science. 2021 Dec 24;374(6575):1586-1593. doi: 10.1126/science.abl4784. Epub 2021 Nov 2.
4
Synthetic and computational efforts towards the development of peptidomimetics and small-molecule SARS-CoV 3CLpro inhibitors.
Bioorg Med Chem. 2021 Sep 15;46:116301. doi: 10.1016/j.bmc.2021.116301. Epub 2021 Jul 3.
5
3CL Protease Inhibitors with an Electrophilic Arylketone Moiety as Anti-SARS-CoV-2 Agents.
J Med Chem. 2022 Feb 24;65(4):2926-2939. doi: 10.1021/acs.jmedchem.1c00665. Epub 2021 Jul 27.
6
Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection.
Proc Natl Acad Sci U S A. 2021 Jul 20;118(29). doi: 10.1073/pnas.2101555118.
9
Baicalein and Baicalin Inhibit SARS-CoV-2 RNA-Dependent-RNA Polymerase.
Microorganisms. 2021 Apr 22;9(5):893. doi: 10.3390/microorganisms9050893.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验