文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CD4+效应 T 细胞加速了小鼠的阿尔茨海默病进程。

CD4+ effector T cells accelerate Alzheimer's disease in mice.

机构信息

Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.

Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41099, USA.

出版信息

J Neuroinflammation. 2021 Nov 19;18(1):272. doi: 10.1186/s12974-021-02308-7.


DOI:10.1186/s12974-021-02308-7
PMID:34798897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8603581/
Abstract

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aβ) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS: In this report, we developed and characterized cloned lines of amyloid beta (Aβ) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aβ-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aβ T cell epitope loaded haplotype-matched major histocompatibility complex II IA (MHCII-IA-KLVFFAEDVGSNKGA) tetramer binding. Aβ-Th1 and Aβ-Th17 clones were adoptively transferred into APP/PS1 double-transgenic mice expressing chimeric mouse/human amyloid precursor protein and mutant human presenilin 1, and the mice were assessed for memory impairments. Finally, blood, spleen, lymph nodes and brain were harvested for immunological, biochemical, and histological analyses. RESULTS: The propagated Aβ-Th1 and Aβ-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aβ reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aβ-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS: These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aβ reactive Tregs.

摘要

背景:阿尔茨海默病(AD)是一种进行性神经退行性疾病,其特征是病理性沉积错误折叠的自我蛋白淀粉样β(Aβ),这反过来又促进了 tau 聚集和神经退行性变。神经炎症被认为是由先天小胶质细胞激活引起的关键疾病驱动因素。最近,人们发现适应性免疫改变早在疾病发生之前就已经发生,并持续存在于整个疾病过程中。这些改变是如何发生的,以及它们是否可以被利用来阻止疾病进展尚不清楚。我们假设自身抗原会诱导自身反应性效应 T 细胞(Teffs),从而驱动促炎和神经破坏性免疫,导致认知障碍。在这里,我们研究了效应免疫的作用及其如何影响 AD 动物模型中的细胞水平疾病病理生物学。

方法:在本报告中,我们开发并表征了克隆的淀粉样β(Aβ)反应性 1 型辅助性 T 细胞(Th1)和 17 型 Th(Th17)细胞系,以研究它们在 AD 发病机制中的作用。使用流式细胞术、免疫印迹染色和 Aβ T 细胞表位负载的单倍型匹配主要组织相容性复合体 II IA(MHCII-IA-KLVFFAEDVGSNKGA)四聚体结合,证实了 Aβ 特异性 Th1 和 Th17 克隆的细胞表型和抗原特异性。将 Aβ-Th1 和 Aβ-Th17 克隆过继转移到表达嵌合小鼠/人淀粉样前体蛋白和突变人早老素 1 的 APP/PS1 双转基因小鼠中,并评估小鼠的记忆障碍。最后,采集血液、脾脏、淋巴结和大脑进行免疫、生化和组织学分析。

结果:增殖的 Aβ-Th1 和 Aβ-Th17 克隆被证实稳定且寿命长。用 Aβ 反应性 Teffs 治疗 APP/PS1 小鼠加速了记忆障碍和全身炎症,增加了淀粉样蛋白负荷,升高了小胶质细胞激活,并加剧了神经炎症。Th1 和 Th17 Aβ 反应性 Teffs 通过下调外周和中枢神经系统中的抗炎和免疫抑制调节性 T 细胞(Tregs)来加重 AD 病理。

结论:这些结果强调了 CD4+Teffs 在 AD 进展中的重要病理作用。我们假设,与疾病相关的效应 T 细胞免疫反应可以得到控制。一种解决方案是通过 Aβ 反应性 Tregs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/ae4f31eed4fb/12974_2021_2308_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/77a808ccb1c6/12974_2021_2308_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/580b539b5b9f/12974_2021_2308_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/bdf8a21dd043/12974_2021_2308_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/3448483f5fbe/12974_2021_2308_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/18cda74bde14/12974_2021_2308_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/ceb991eeadfb/12974_2021_2308_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/e77b0ee74bb8/12974_2021_2308_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/ae4f31eed4fb/12974_2021_2308_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/77a808ccb1c6/12974_2021_2308_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/580b539b5b9f/12974_2021_2308_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/bdf8a21dd043/12974_2021_2308_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/3448483f5fbe/12974_2021_2308_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/18cda74bde14/12974_2021_2308_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/ceb991eeadfb/12974_2021_2308_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/e77b0ee74bb8/12974_2021_2308_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892e/8603581/ae4f31eed4fb/12974_2021_2308_Fig8_HTML.jpg

相似文献

[1]
CD4+ effector T cells accelerate Alzheimer's disease in mice.

J Neuroinflammation. 2021-11-19

[2]
IFN-γ Production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease.

J Immunol. 2013-1-30

[3]
Amyloid-β specific regulatory T cells attenuate Alzheimer's disease pathobiology in APP/PS1 mice.

Mol Neurodegener. 2023-12-18

[4]
Influenza vaccination in early Alzheimer's disease rescues amyloidosis and ameliorates cognitive deficits in APP/PS1 mice by inhibiting regulatory T cells.

J Neuroinflammation. 2020-2-19

[5]
Age- and sex-related differences of periodontal bone resorption, cognitive function, and immune state in APP/PS1 murine model of Alzheimer's disease.

J Neuroinflammation. 2023-6-27

[6]
Peritoneal dialysis reduces amyloid-beta plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model.

Acta Neuropathol. 2017-5-5

[7]
Dihydromyricetin inhibits microglial activation and neuroinflammation by suppressing NLRP3 inflammasome activation in APP/PS1 transgenic mice.

CNS Neurosci Ther. 2018-6-4

[8]
ABCA7 Deficiency Accelerates Amyloid-β Generation and Alzheimer's Neuronal Pathology.

J Neurosci. 2016-3-30

[9]
Benzo(a)pyrene exposure induced neuronal loss, plaque deposition, and cognitive decline in APP/PS1 mice.

J Neuroinflammation. 2020-8-31

[10]
Mutant presenilin-1 deregulated peripheral immunity exacerbates Alzheimer-like pathology.

J Cell Mol Med. 2011-2

引用本文的文献

[1]
Systemic inflammation as a central player in the initiation and development of Alzheimer's disease.

Immun Ageing. 2025-8-21

[2]
Immunosenescence: signaling pathways, diseases and therapeutic targets.

Signal Transduct Target Ther. 2025-8-6

[3]
Hypertension promotes neuroinflammation, brain injury and cognitive impairment.

Brain Behav Immun Health. 2025-7-10

[4]
Immune cells in Alzheimer's disease: insights into pathogenesis and potential therapeutic targets.

Med Rev (2021). 2024-12-23

[5]
Integrative bioinformatics and machine learning identify iron metabolism genes MAP4, GPT, and HIRIP3 as diagnostic biomarkers and therapeutic targets in Alzheimer's disease.

Front Cell Neurosci. 2025-6-6

[6]
Upregulation of PD-1 on Peripheral T cells Subsets is Associated with Parkinson's Disease.

Mol Neurobiol. 2025-6-19

[7]
The role of interleukin-17 in neurological disorders.

Anim Cells Syst (Seoul). 2025-6-3

[8]
Alzheimer's disease pathogenesis: standing at the crossroad of lipid metabolism and immune response.

Mol Neurodegener. 2025-6-4

[9]
STING deletion protects against amyloid β-induced Alzheimer's disease pathogenesis.

Alzheimers Dement. 2025-5

[10]
CD28 CD45RA CD8br AC mediated the effects of Interleukin- 6 on Alzheimer's disease: A Mendelian Randomization Study.

BMC Neurol. 2025-5-14

本文引用的文献

[1]
ProMod3-A versatile homology modelling toolbox.

PLoS Comput Biol. 2021-1

[2]
Amyloid-PET and F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias.

Lancet Neurol. 2020-11

[3]
Restoring regulatory T-cell dysfunction in Alzheimer's disease through expansion.

Brain Commun. 2020-7-20

[4]
Generation of Phenothiazine with Potent Anti-TLK1 Activity for Prostate Cancer Therapy.

iScience. 2020-8-20

[5]
Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders.

Mol Neurodegener. 2020-6-5

[6]
Immunotherapy for Parkinson's disease.

Neurobiol Dis. 2020-4

[7]
Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease.

Nature. 2020-1-8

[8]
A Synthetic Agonist to Vasoactive Intestinal Peptide Receptor-2 Induces Regulatory T Cell Neuroprotective Activities in Models of Parkinson's Disease.

Front Cell Neurosci. 2019-9-18

[9]
Microglial subtypes: diversity within the microglial community.

EMBO J. 2019-8-2

[10]
The Characterization of Regulatory T-Cell Profiles in Alzheimer's Disease and Multiple Sclerosis.

Sci Rep. 2019-6-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索