Zeng Sheng, Geng Guohua, Gao Hongjuan, Zhou Mingquan
Northwest university, Xi'an, China.
Sci Rep. 2021 Nov 19;11(1):22573. doi: 10.1038/s41598-021-01722-4.
Geometry images parameterise a mesh with a square domain and store the information in a single chart. A one-to-one correspondence between the 2D plane and the 3D model is convenient for processing 3D models. However, the parameterised vertices are not all located at the intersection of the gridlines the existing geometry images. Thus, errors are unavoidable when a 3D mesh is reconstructed from the chart. In this paper, we propose parameterise surface onto a novel geometry image that preserves the constraint of topological neighbourhood information at integer coordinate points on a 2D grid and ensures that the shape of the reconstructed 3D mesh does not change from supplemented image data. We find a collection of edges that opens the mesh into simply connected surface with a single boundary. The point distribution with approximate blue noise spectral characteristics is computed by capacity-constrained delaunay triangulation without retriangulation. We move the vertices to the constrained mesh intersection, adjust the degenerate triangles on a regular grid, and fill the blank part by performing a local affine transformation between each triangle in the mesh and image. Unlike other geometry images, the proposed method results in no error in the reconstructed surface model when floating-point data are stored in the image. High reconstruction accuracy is achieved when the xyz positions are in a 16-bit data format in each image channel because only rounding errors exist in the topology-preserving geometry images, there are no sampling errors. This method performs one-to-one mapping between the 3D surface mesh and the points in the 2D image, while foldovers do not appear in the 2D triangular mesh, maintaining the topological structure. This also shows the potential of using a 2D image processing algorithm to process 3D models.
几何图像用一个方形域对网格进行参数化,并将信息存储在单个图表中。二维平面与三维模型之间的一一对应关系便于处理三维模型。然而,参数化顶点并非都位于现有几何图像的网格线交点处。因此,从图表重建三维网格时误差是不可避免的。在本文中,我们提出将曲面参数化到一种新颖的几何图像上,该图像在二维网格的整数坐标点处保留拓扑邻域信息的约束,并确保从补充图像数据重建的三维网格形状不变。我们找到一组边,将网格展开为具有单个边界的简单连通曲面。通过容量约束的德劳内三角剖分(无需重新三角剖分)计算具有近似蓝噪声频谱特征的点分布。我们将顶点移动到约束网格交点处,在规则网格上调整退化三角形,并通过在网格中的每个三角形与图像之间执行局部仿射变换来填充空白部分。与其他几何图像不同,当图像中存储浮点数据时,所提出的方法在重建表面模型时不会产生误差。当每个图像通道中的xyz位置采用16位数据格式时,可实现高重建精度,因为在保留拓扑结构的几何图像中仅存在舍入误差,不存在采样误差。该方法在三维表面网格与二维图像中的点之间执行一一映射,同时二维三角形网格中不会出现折叠,保持了拓扑结构。这也展示了使用二维图像处理算法处理三维模型的潜力。