Li Longbin, Huang Senhe, Cao Rui, Yuan Kai, Lu Chenbao, Huang Bingyu, Tang Xiannong, Hu Ting, Zhuang Xiaodong, Chen Yiwang
College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China.
The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Small. 2022 Jan;18(2):e2105387. doi: 10.1002/smll.202105387. Epub 2021 Nov 20.
Single-atom catalysts (SACs) are attractive candidates for oxygen reduction reaction (ORR). The catalytic performances of SACs are mainly determined by the surrounding microenvironment of single metal sites. Microenvironment engineering of SACs and understanding of the structure-activity relationship is critical, which remains challenging. Herein, a self-sacrificing strategy is developed to synthesize asymmetric N,S-coordinated single-atom Fe with axial fifth hydroxy (OH) coordination (Fe-N S OH) embedded in N,S codoped porous carbon nanospheres (FeN/SC). Such unique penta-coordination microenvironment is determined by cutting-edge techonologies aiding of systematic simulations. The as-obtained FeN/SC exhibits superior catalytic ORR activity, and showcases a half-wave potential of 0.882 V surpassing the benchmark Pt/C. Moreover, theoretical calculations confirmed the axial OH in FeN S OH can optimize 3d orbitals of Fe center to strengthen O adsorption and enhance O activation on Fe site, thus reducing the ORR barrier and accelerating ORR dynamics. Furthermore, FeN/SC containing H O fuel cell performs a high peak power density of 512 mW cm , and FeN/SC based Znair batteries show the peak power density of 203 and 49 mW cm in liquid and flexible all-solid-state configurations, respectively. This study offers a new platform for fundamentally understand the axial fifth coordination in asymmetrical planar single-atom metal sites for electrocatalysis.
单原子催化剂(SACs)是氧还原反应(ORR)极具吸引力的候选材料。SACs的催化性能主要由单个金属位点周围的微环境决定。SACs的微环境工程以及对结构-活性关系的理解至关重要,但仍具有挑战性。在此,开发了一种自牺牲策略,以合成嵌入N、S共掺杂多孔碳纳米球(FeN/SC)中的具有轴向第五羟基(OH)配位的不对称N、S配位单原子铁(Fe-N S OH)。这种独特的五配位微环境是通过前沿技术辅助系统模拟确定的。所制备的FeN/SC表现出优异的ORR催化活性,半波电位为0.882 V,超过了基准Pt/C。此外,理论计算证实,FeN S OH中的轴向OH可以优化Fe中心的3d轨道,以增强O吸附并提高Fe位点上的O活化,从而降低ORR势垒并加速ORR动力学。此外,含H O燃料电池的FeN/SC具有512 mW cm的高峰值功率密度,基于FeN/SC的锌空气电池在液体和柔性全固态配置中的峰值功率密度分别为203和49 mW cm。本研究为从根本上理解不对称平面单原子金属位点中的轴向第五配位用于电催化提供了一个新平台。