Tian Ziqi, Wang Yuan, Li Yanle, Yao Ge, Zhang Qiuju, Chen Liang
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China.
University of Chinese Academy of Sciences, 100049 Beijing, China.
iScience. 2022 Jun 8;25(7):104557. doi: 10.1016/j.isci.2022.104557. eCollection 2022 Jul 15.
Transition metal macrocyclic complexes are appealing catalysts for electrochemical oxygen reduction reaction (ORR). Here, we perform first-principles calculations to gain a comprehensive understanding on the structure-property relationship of the metal macrocyclic complex systems. Various modifications of the complexes are considered, including centered metal, axial ligand, coordination atom, substituent, and macrocycles. Based on simulation, introduction of appropriate apical ligand can improve the performance of all the three metals, whereas replacement of nitrogen with oxygen or carbon as the coordination atoms may enhance the Ni-centered systems. The antiaromatic ring stabilizes the ∗OOH intermediate, whereas the macrocycle with reduced electron density inhibits the binding with oxygen. By regulating the coordination environment, the overpotential can be significantly reduced. This work may assist the rational design of ORR catalysts and is of great significance for the future development of oxygen reduction catalysts.
过渡金属大环配合物是电化学氧还原反应(ORR)中颇具吸引力的催化剂。在此,我们进行第一性原理计算,以全面了解金属大环配合物体系的结构-性能关系。考虑了配合物的各种修饰,包括中心金属、轴向配体、配位原子、取代基和大环。基于模拟,引入合适的顶端配体可提高所有三种金属的性能,而用氧或碳取代氮作为配位原子可能会增强以镍为中心的体系。反芳香环使*OOH中间体稳定,而电子密度降低的大环抑制与氧的结合。通过调节配位环境,可显著降低过电位。这项工作有助于合理设计ORR催化剂,对氧还原催化剂的未来发展具有重要意义。