Suppr超能文献

静息态脑活动可预测 fMRI 神经反馈训练中目标无关的能力。

Resting-state brain activity can predict target-independent aptitude in fMRI-neurofeedback training.

机构信息

Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan; School of Medicine, Fujita Health University, Toyoake 470-1192, Japan.

Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan.

出版信息

Neuroimage. 2021 Dec 15;245:118733. doi: 10.1016/j.neuroimage.2021.118733. Epub 2021 Nov 17.

Abstract

Neurofeedback (NF) aptitude, which refers to an individual's ability to change brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical applications to screen patients suitable for NF treatment. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude, independent of NF-targeting brain regions. We combined the data from fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the multiple regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Subsequently, the reproducibility of the prediction model was validated using independent test data from another site. The identified FC model revealed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting that NF aptitude may be involved in the attentional mode-orientation modulation system's characteristics in task-free resting-state brain activity.

摘要

神经反馈(NF)能力是指个体通过 NF 训练改变大脑活动的能力,据报道,这种能力在人与人之间存在显著差异。预测个体的 NF 能力对于临床应用至关重要,可以筛选出适合 NF 治疗的患者。在本研究中,我们提取了与 NF 靶向脑区无关的 NF 能力的静息态功能脑连接(FC)标志物。我们结合了来自两个独立地点的针对四个不同脑区的 fMRI-NF 研究的数据(来自 59 名健康成年人和 6 名重度抑郁症患者),以收集与随后的 fMRI-NF 训练中的能力评分相关的静息态 fMRI 数据。然后,我们使用来自一个地点的发现数据集训练多元回归模型,根据静息态 fMRI 数据预测个体 NF 能力评分,并确定了六个预测 NF 能力的静息态 FC。随后,使用另一个地点的独立测试数据验证了预测模型的可重复性。确定的 FC 模型表明,后扣带回皮质是脑区之间的功能枢纽,并形成了预测性的静息态 FC,这表明 NF 能力可能参与了无任务静息态大脑活动中注意力模式定向调节系统的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验