Zhang Na, Li Jia-Jia, Li Yang, Wang Hang, Zhang Jian-Yong, Liu Yufeng, Fang Yong-Zheng, Liu Zhifu, Zhou Min
Shanghai Institute of Technology, Shanghai 201418, PRChina.
Shanghai Institute of Technology, Shanghai 201418, PRChina.
J Colloid Interface Sci. 2022 Feb 15;608(Pt 3):3192-3203. doi: 10.1016/j.jcis.2021.11.045. Epub 2021 Nov 13.
CsPbBr quantum dots (CPB QDs) have great potential in photoreduction of CO to chemical fuels. However, the low charge transportation efficiency and chemical instability of CPB QDs presents a considerable challenge. Herein, we describe the electrostatic assemblies of negatively charged colloidal two dimensional (2D) Cu-Tetrakis(4-carboxyphenyl) porphyrins (Cu-TCPP) nanosheets and positively CPB QDs to construct the hydride heterojunction. The photogenerated electron migration from CPB QDs to Cu-TCPP nanosheets has been witnessed, providing the supply of long-lived electrons for the reduction of CO molecules adsorbed on Cu-TCPP matrix. As a direct result, The CPB@Cu-TCPP-x (x wt% of CPB QDs) photocatalysts exhibit significantly enhanced photocatalytic conversion of CO, compared to the parent Cu-TCPP nanosheets or single CPB QDs. Especially, when with 20% CPB QDs, the heterostruture system achieves an evolution yield of 287.08 µmol g in 4 h with highly CO selectivity (99%) under visible light irradiation, which is equivalent to a 3.87-fold improvement compared to the pristine CPB QDs. Meanwhile, the CH generation rate can be up to 3.25 µmol g. This optimized construction of heterostructure could provide a platform to funnel photoinduced electrons to the reaction center, which can both act as a crucial capture and the reaction actives of CO.
CsPbBr量子点(CPB QDs)在将CO光还原为化学燃料方面具有巨大潜力。然而,CPB QDs的低电荷传输效率和化学不稳定性带来了相当大的挑战。在此,我们描述了带负电荷的二维(2D)铜-四(4-羧基苯基)卟啉(Cu-TCPP)纳米片与带正电荷的CPB QDs的静电组装,以构建氢化物异质结。已观察到光生电子从CPB QDs迁移到Cu-TCPP纳米片,为还原吸附在Cu-TCPP基质上的CO分子提供了长寿命电子。直接结果是,与母体Cu-TCPP纳米片或单一CPB QDs相比,CPB@Cu-TCPP-x(x wt%的CPB QDs)光催化剂表现出显著增强的CO光催化转化。特别是,当含有20%的CPB QDs时,该异质结构体系在可见光照射下4小时内实现了287.08 µmol g的析出产率,具有很高的CO选择性(99%),与原始CPB QDs相比提高了3.87倍。同时,CH生成速率可达3.25 µmol g。这种优化的异质结构构建可以提供一个平台,将光生电子引导到反应中心,该反应中心既可以作为关键的捕获点,又可以作为CO的反应活性点。