Suppr超能文献

用于光催化还原 CO 的自组装 TiO/CsPbBr 杂化物中的独特 S 型异质结

Unique S-scheme heterojunctions in self-assembled TiO/CsPbBr hybrids for CO photoreduction.

作者信息

Xu Feiyan, Meng Kai, Cheng Bei, Wang Shengyao, Xu Jingsan, Yu Jiaguo

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P.R. China.

Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P.R. China.

出版信息

Nat Commun. 2020 Sep 14;11(1):4613. doi: 10.1038/s41467-020-18350-7.

Abstract

Exploring photocatalysts to promote CO photoreduction into solar fuels is of great significance. We develop TiO/perovskite (CsPbBr) S-scheme heterojunctions synthesized by a facile electrostatic-driven self-assembling approach. Density functional theory calculation combined with experimental studies proves the electron transfer from CsPbBr quantum dots (QDs) to TiO, resulting in the construction of internal electric field (IEF) directing from CsPbBr to TiO upon hybridization. The IEF drives the photoexcited electrons in TiO to CsPbBr upon light irradiation as revealed by in-situ X-ray photoelectron spectroscopy analysis, suggesting the formation of an S-scheme heterojunction in the TiO/CsPbBr nanohybrids which greatly promotes the separation of electron-hole pairs to foster efficient CO photoreduction. The hybrid nanofibers unveil a higher CO-reduction rate (9.02 μmol g h) comparing with pristine TiO nanofibers (4.68 μmol g h). Isotope (CO) tracer results confirm that the reduction products originate from CO source.

摘要

探索光催化剂以促进将CO光还原为太阳能燃料具有重要意义。我们开发了通过简便的静电驱动自组装方法合成的TiO/钙钛矿(CsPbBr)S型异质结。密度泛函理论计算与实验研究相结合证明了电子从CsPbBr量子点(QDs)转移到TiO,导致在杂化时形成从CsPbBr指向TiO的内建电场(IEF)。原位X射线光电子能谱分析表明,IEF在光照下将TiO中的光激发电子驱动到CsPbBr,这表明在TiO/CsPbBr纳米杂化物中形成了S型异质结,极大地促进了电子-空穴对的分离,从而促进了高效的CO光还原。与原始TiO纳米纤维(4.68 μmol g h)相比,杂化纳米纤维展现出更高的CO还原速率(9.02 μmol g h)。同位素(CO)示踪结果证实还原产物源自CO源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26d5/7490390/b9df1a8333b8/41467_2020_18350_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验