Suppr超能文献

SIS3 通过调节 Nox4 依赖性活性氧抑制破骨细胞生成并改善去卵巢小鼠的骨丢失。

SIS3 suppresses osteoclastogenesis and ameliorates bone loss in ovariectomized mice by modulating Nox4-dependent reactive oxygen species.

机构信息

Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China.

Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.

出版信息

Biochem Pharmacol. 2022 Jan;195:114846. doi: 10.1016/j.bcp.2021.114846. Epub 2021 Nov 18.

Abstract

Osteoporosis is a metabolic disorder of reduced bone mass, accompanied by the deterioration of the bone microstructure, resulting in increased brittleness and easy fracture. Its pathogenesis can be explained by mainly excessive osteoclast formation or bone resorption hyperfunction. Oxidative stress is intricately linked with bone metabolism, and the maturation and bone resorption of osteoclasts respond to intracellular ROS levels. SIS3 is a small-molecule compound that selectively suppresses Smad3 phosphorylation in the TGF-β/Smad signaling pathway and attenuates the ability to bind to target DNA. Several studies have reported that Smad3 plays a significant role in bone metabolism. However, whether SIS3 can modulate bone metabolism by affecting osteoclastogenesis and the specific molecular mechanisms involved remain unknown. Here, we demonstrated that SIS3 could suppress osteoclastogenesis and ameliorate bone loss in ovariectomized mice. Mechanistically, SIS3 inhibited Smad3 phosphorylation in BMMs, and the deficiency of phosphorylated Smad3 downregulated ROS production and Nox4-dependent expression during osteoclast formation, thereby blocking MAPK phosphorylation and the synthesis of downstream osteoclast marker proteins. Similarly, Nox4 plasmid transfection significantly alleviated osteoclast formation inhibited by SIS3. In addition, we identified the interaction region between Smad3 and Nox4 by ChIP and dual luciferase reporter assays. Collectively, we found that SIS3 could inhibit Smad3 phosphorylation, reduce Nox4-dependent ROS generation induced by RANKL, and prevent osteoclast differentiation and maturation, making it a promising alternative therapy for osteoporosis.

摘要

骨质疏松症是一种以骨量减少为特征的代谢性疾病,伴有骨微观结构恶化,导致脆性增加和容易骨折。其发病机制可以解释为破骨细胞形成或骨吸收功能亢进。氧化应激与骨代谢密切相关,破骨细胞的成熟和骨吸收对细胞内 ROS 水平有反应。SIS3 是一种小分子化合物,可选择性抑制 TGF-β/Smad 信号通路中 Smad3 的磷酸化,从而降低与靶 DNA 结合的能力。有几项研究报道 Smad3 在骨代谢中起着重要作用。然而,SIS3 是否可以通过影响破骨细胞生成来调节骨代谢以及涉及的具体分子机制尚不清楚。在这里,我们证明 SIS3 可以抑制去卵巢小鼠的破骨细胞生成并改善骨丢失。机制上,SIS3 抑制了 BMMs 中的 Smad3 磷酸化,而磷酸化 Smad3 的缺乏下调了破骨细胞形成过程中的 ROS 产生和 Nox4 依赖性表达,从而阻断了 MAPK 磷酸化和下游破骨细胞标记蛋白的合成。同样,Nox4 质粒转染显着减轻了 SIS3 抑制的破骨细胞形成。此外,我们通过 ChIP 和双荧光素酶报告基因检测鉴定了 Smad3 和 Nox4 之间的相互作用区域。总之,我们发现 SIS3 可以抑制 Smad3 磷酸化,减少 RANKL 诱导的 Nox4 依赖性 ROS 产生,并防止破骨细胞分化和成熟,使其成为骨质疏松症有前途的替代治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验