Stark Neurosciences Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA.
J Biol Chem. 2022 Jan;298(1):101431. doi: 10.1016/j.jbc.2021.101431. Epub 2021 Nov 18.
Insulin resistance impairs postprandial glucose uptake through glucose transporter type 4 (GLUT4) and is the primary defect preceding type 2 diabetes. We previously generated an insulin-resistant mouse model with human GLUT4 promoter-driven insulin receptor knockout (GIRKO) in the muscle, adipose, and neuronal subpopulations. However, the rate of diabetes in GIRKO mice remained low prior to 6 months of age on normal chow diet (NCD), suggesting that additional factors/mechanisms are responsible for adverse metabolic effects driving the ultimate progression of overt diabetes. In this study, we characterized the metabolic phenotypes of the adult GIRKO mice acutely switched to high-fat diet (HFD) feeding in order to identify additional metabolic challenges required for disease progression. Distinct from other diet-induced obesity (DIO) and genetic models (e.g., db/db mice), GIRKO mice remained leaner on HFD feeding, but developed other cardinal features of insulin resistance syndrome. GIRKO mice rapidly developed hyperglycemia despite compensatory increases in β-cell mass and hyperinsulinemia. Furthermore, GIRKO mice also had impaired oral glucose tolerance and a limited glucose-lowering benefit from exendin-4, suggesting that the blunted incretin effect contributed to hyperglycemia. Secondly, GIRKO mice manifested severe dyslipidemia while on HFD due to elevated hepatic lipid secretion, serum triglyceride concentration, and lipid droplet accumulation in hepatocytes. Thirdly, GIRKO mice on HFD had increased inflammatory cues in the gut, which were associated with the HFD-induced microbiome alterations and increased serum lipopolysaccharide (LPS). In conclusion, our studies identified important gene/diet interactions contributing to diabetes progression, which might be leveraged to develop more efficacious therapies.
胰岛素抵抗通过葡萄糖转运蛋白 4 (GLUT4) 损害餐后葡萄糖摄取,是 2 型糖尿病之前的主要缺陷。我们之前在肌肉、脂肪和神经元亚群中生成了一种带有人类 GLUT4 启动子驱动的胰岛素受体敲除(GIRKO)的胰岛素抵抗小鼠模型。然而,在正常饮食(NCD)下,GIRKO 小鼠在 6 个月前的糖尿病发病率仍然较低,这表明还有其他因素/机制负责导致最终显性糖尿病的不良代谢效应。在这项研究中,我们在急性切换到高脂肪饮食(HFD)喂养的成年 GIRKO 小鼠中描述了其代谢表型,以便确定疾病进展所需的其他代谢挑战。与其他饮食诱导肥胖(DIO)和遗传模型(例如 db/db 小鼠)不同,GIRKO 小鼠在 HFD 喂养时仍然更瘦,但出现了胰岛素抵抗综合征的其他主要特征。尽管β细胞质量代偿性增加和高胰岛素血症,但 GIRKO 小鼠仍迅速发生高血糖。此外,GIRKO 小鼠也表现出口服葡萄糖耐量受损和 exendin-4 的降血糖作用有限,表明减弱的肠促胰岛素效应导致高血糖。其次,由于肝脂质分泌增加、血清甘油三酯浓度升高和肝细胞内脂质滴积累,GIRKO 小鼠在 HFD 上表现出严重的血脂异常。第三,GIRKO 小鼠在 HFD 上的肠道中存在增加的炎症信号,这与 HFD 诱导的微生物组改变和血清脂多糖(LPS)增加有关。总之,我们的研究确定了促进糖尿病进展的重要基因/饮食相互作用,这可能被利用来开发更有效的治疗方法。