Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States.
Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States.
Am J Physiol Endocrinol Metab. 2024 May 1;326(5):E567-E576. doi: 10.1152/ajpendo.00061.2023. Epub 2024 Mar 13.
Signaling through prostaglandin E EP3 receptor (EP3) actively contributes to the β-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the β cell. We hypothesized β-cell-specific EP3 knockout (EP3 βKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gα, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 βKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 βKO mice as compared with wild-type controls, with no effect of β-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 βKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of β-cell replication and survival, revealing severe β-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating β-cell function along the progression to T2D and that there exist Gα-independent mechanisms behind its effects. The EP3 receptor is a strong inhibitor of β-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed β-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.
前列腺素 E EP3 受体 (EP3) 的信号转导积极促进 2 型糖尿病 (T2D) 的 β 细胞功能障碍。在 T2D 模型中,由于胰腺外组织中 EP3 的缺失导致摄食过度和严重的胰岛素抵抗,全身 EP3 敲除小鼠的代谢表型比野生型对照明显更差,掩盖了 EP3 在 β 细胞中缺失的任何潜在有益作用。我们假设β细胞特异性 EP3 敲除 (EP3 βKO) 小鼠将免受高脂肪饮食 (HFD) 诱导的葡萄糖不耐受,模拟缺乏 EP3 效应物 Gα 的小鼠,Gα 的组织分布要局限得多。然而,当用 HFD 喂养 16 周时,EP3 βKO 小鼠虽然部分但不完全免受葡萄糖不耐受的影响。此外,外源性胰高血糖素样肽 1 类似物 exendin-4 可更强烈地增强来自对照饮食和 HFD 喂养的 EP3 βKO 小鼠胰岛中葡萄糖刺激的胰岛素分泌,而β细胞特异性 EP3 缺失对胰岛胰岛素含量或复制和存活标志物无影响。然而,在饮食喂养 26 周后,来自对照饮食和 HFD 喂养的 EP3 βKO 小鼠的胰岛对刺激葡萄糖的胰岛素分泌百分比显著减少,无论是否存在 exendin-4,胰岛胰岛素含量升高与β细胞复制和存活标志物无关,提示严重的β细胞功能障碍。我们的结果表明,EP3 在沿着 T2D 进展的过程中对β细胞功能进行时间调节中起着关键作用,并且在其作用背后存在 Gα 独立的机制。EP3 受体是β细胞功能和复制的强烈抑制剂,提示其作为该疾病的潜在治疗靶点。然而,EP3 在胰腺外组织中具有保护作用。为了解决这个问题,我们设计了β细胞特异性 EP3 敲除小鼠,并对其进行高脂肪饮食喂养以诱导葡萄糖不耐受。全身敲除小鼠的负代谢表型被消除,EP3 缺失改善了葡萄糖耐量,对胰岛胰岛素分泌和含量产生相反的影响。