Suppr超能文献

论监测流行病中的一些基本挑战。

On some fundamental challenges in monitoring epidemics.

作者信息

Vasiliauskaite Vaiva, Antulov-Fantulin Nino, Helbing Dirk

机构信息

Computational Social Science, ETH Zürich, Zürich, Switzerland.

Complexity Science Hub Vienna, Wien, Austria.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Jan 10;380(2214):20210117. doi: 10.1098/rsta.2021.0117. Epub 2021 Nov 22.

Abstract

Epidemic models often reflect characteristic features of infectious spreading processes by coupled nonlinear differential equations considering different states of health (such as susceptible, infectious or recovered). This compartmental modelling approach, however, delivers an incomplete picture of the dynamics of epidemics, as it neglects stochastic and network effects, and the role of the measurement process, on which the estimation of epidemiological parameters and incidence values relies. In order to study the related issues, we combine established epidemiological spreading models with a measurement model of the testing process, considering the problems of false positives and false negatives as well as biased sampling. Studying a model-generated ground truth in conjunction with simulated observation processes (virtual measurements) allows one to gain insights into the fundamental limitations of purely data-driven methods when assessing the epidemic situation. We conclude that epidemic monitoring, simulation, and forecasting are wicked problems, as applying a conventional data-driven approach to a complex system with nonlinear dynamics, network effects and uncertainty can be misleading. Nevertheless, some of the errors can be corrected for, using scientific knowledge of the spreading dynamics and the measurement process. We conclude that such corrections should generally be part of epidemic monitoring, modelling and forecasting efforts. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.

摘要

流行病模型通常通过考虑不同健康状态(如易感、感染或康复)的耦合非线性微分方程来反映传染病传播过程的特征。然而,这种 compartmental 建模方法对流行病动态的描述并不完整,因为它忽略了随机和网络效应以及测量过程的作用,而流行病学参数和发病率值的估计依赖于测量过程。为了研究相关问题,我们将已有的流行病学传播模型与检测过程的测量模型相结合,考虑假阳性和假阴性问题以及有偏抽样。结合模拟观测过程(虚拟测量)研究模型生成的基本事实,能够让人们深入了解在评估疫情形势时纯数据驱动方法的根本局限性。我们得出结论,疫情监测、模拟和预测是棘手的问题,因为将传统的数据驱动方法应用于具有非线性动态、网络效应和不确定性的复杂系统可能会产生误导。尽管如此,利用传播动态和测量过程的科学知识,可以对一些误差进行校正。我们得出结论,这种校正通常应成为疫情监测、建模和预测工作的一部分。本文是“传染病监测的数据科学方法”主题特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a644/8607144/373e30883edc/rsta20210117f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验