Suppr超能文献

用于新冠病毒药物研发和疫苗开发的人工智能

Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development.

作者信息

Keshavarzi Arshadi Arash, Webb Julia, Salem Milad, Cruz Emmanuel, Calad-Thomson Stacie, Ghadirian Niloofar, Collins Jennifer, Diez-Cecilia Elena, Kelly Brendan, Goodarzi Hani, Yuan Jiann Shiun

机构信息

Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States.

Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States.

出版信息

Front Artif Intell. 2020 Aug 18;3:65. doi: 10.3389/frai.2020.00065. eCollection 2020.

Abstract

SARS-COV-2 has roused the scientific community with a call to action to combat the growing pandemic. At the time of this writing, there are as yet no novel antiviral agents or approved vaccines available for deployment as a frontline defense. Understanding the pathobiology of COVID-19 could aid scientists in their discovery of potent antivirals by elucidating unexplored viral pathways. One method for accomplishing this is the leveraging of computational methods to discover new candidate drugs and vaccines . In the last decade, machine learning-based models, trained on specific biomolecules, have offered inexpensive and rapid implementation methods for the discovery of effective viral therapies. Given a target biomolecule, these models are capable of predicting inhibitor candidates in a structural-based manner. If enough data are presented to a model, it can aid the search for a drug or vaccine candidate by identifying patterns within the data. In this review, we focus on the recent advances of COVID-19 drug and vaccine development using artificial intelligence and the potential of intelligent training for the discovery of COVID-19 therapeutics. To facilitate applications of deep learning for SARS-COV-2, we highlight multiple molecular targets of COVID-19, inhibition of which may increase patient survival. Moreover, we present CoronaDB-AI, a dataset of compounds, peptides, and epitopes discovered either or that can be potentially used for training models in order to extract COVID-19 treatment. The information and datasets provided in this review can be used to train deep learning-based models and accelerate the discovery of effective viral therapies.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)唤起了科学界采取行动抗击不断蔓延的大流行病。在撰写本文时,尚无新型抗病毒药物或获批疫苗可作为一线防御手段进行部署。了解2019冠状病毒病(COVID-19)的病理生物学,通过阐明未被探索的病毒途径,有助于科学家发现有效的抗病毒药物。实现这一目标的一种方法是利用计算方法来发现新的候选药物和疫苗。在过去十年中,基于特定生物分子训练的机器学习模型为发现有效的病毒疗法提供了低成本且快速的实施方法。给定一个目标生物分子,这些模型能够以基于结构的方式预测抑制剂候选物。如果向模型提供足够的数据,它可以通过识别数据中的模式来帮助寻找药物或疫苗候选物。在本综述中,我们重点关注利用人工智能在COVID-19药物和疫苗开发方面的最新进展以及智能训练在发现COVID-19治疗方法方面的潜力。为了促进深度学习在SARS-CoV-2中的应用,我们强调了COVID-19的多个分子靶点,抑制这些靶点可能会提高患者生存率。此外,我们展示了CoronaDB-AI,这是一个已发现的化合物、肽和表位的数据集,可潜在地用于训练模型以提取COVID-19治疗方法。本综述中提供的信息和数据集可用于训练基于深度学习的模型,并加速发现有效的病毒疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b051/7861281/2d6b488859cb/frai-03-00065-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验