Suppr超能文献

利用农村社区人群水平加权社交网络刻画超级传播者。

Characterizing super-spreaders using population-level weighted social networks in rural communities.

机构信息

School of Engineering and Applied Science, Yale University, 17 Hillhouse Ave, New Haven, CT 06520, USA.

Yale Institute for Network Science, Yale University, 17 Hillhouse Ave, New Haven, CT 06520, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Jan 10;380(2214):20210123. doi: 10.1098/rsta.2021.0123. Epub 2021 Nov 22.

Abstract

Sociocentric network maps of entire populations, when combined with data on the nature of constituent dyadic relationships, offer the dual promise of advancing understanding of the relevance of networks for disease transmission and of improving epidemic forecasts. Here, using detailed sociocentric data collected over 4 years in a population of 24 702 people in 176 villages in Honduras, along with diarrhoeal and respiratory disease prevalence, we create a social-network-powered transmission model and identify super-spreading nodes as well as the nodes most vulnerable to infection, using agent-based Monte Carlo network simulations. We predict the extent of outbreaks for communicable diseases based on detailed social interaction patterns. Evidence from three waves of population-level surveys of diarrhoeal and respiratory illness indicates a meaningful positive correlation with the computed super-spreading capability and relative vulnerability of individual nodes. Previous research has identified super-spreaders through retrospective contact tracing or simulated networks. By contrast, our simulations predict that a node's super-spreading capability and its vulnerability in real communities are significantly affected by their connections, the nature of the interaction across these connections, individual characteristics (e.g. age and sex) that affect a person's ability to disperse a pathogen, and also the intrinsic characteristics of the pathogen (e.g. infectious period and latency). This article is part of the theme issue 'Data science approach to infectious disease surveillance'.

摘要

针对整个人群的社会网络图谱,结合组成对偶关系的性质数据,有望在增进对网络在疾病传播中的相关性的理解和改善传染病预测方面带来双重好处。在这里,我们利用在洪都拉斯 176 个村庄的 24702 人中收集的详细社会网络数据,以及腹泻和呼吸道疾病的流行情况,创建了一个基于社交网络的传播模型,并通过基于代理的蒙特卡罗网络模拟,确定了超级传播节点以及最易感染的节点。我们根据详细的社交互动模式预测传染病的爆发程度。来自腹泻和呼吸道疾病的三波人群水平调查的证据表明,与计算出的单个节点的超级传播能力和相对脆弱性存在显著的正相关关系。先前的研究已经通过回顾性接触追踪或模拟网络确定了超级传播者。相比之下,我们的模拟预测表明,节点的超级传播能力及其在真实社区中的脆弱性受到其连接、连接之间的交互性质、影响一个人传播病原体能力的个体特征(例如年龄和性别)以及病原体的固有特征(例如传染期和潜伏期)的显著影响。本文是主题为“传染病监测的数据科学方法”的特刊的一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验