Suppr超能文献

深度波段替换对用于深度学习杂草检测的红、绿、蓝图像的影响

Effect of Depth Band Replacement on Red, Green and Blue Image for Deep Learning Weed Detection.

作者信息

Vandrol Jan, Perren Janis, Koller Adrian

机构信息

Institute of Mechanical Engineering and Energy Technology, Lucerne University of Applied Sciences and Arts, CH-6048 Horw, Switzerland.

出版信息

Sensors (Basel). 2024 Dec 30;25(1):161. doi: 10.3390/s25010161.

Abstract

Automated agricultural robots are becoming more common with the decreased cost of sensor devices and increased computational capabilities of single-board computers. Weeding is one of the mundane and repetitive tasks that robots could be used to perform. The detection of weeds in crops is now common, and commercial solutions are entering the market rapidly. However, less work is carried out on combatting weeds in pastures. Weeds decrease the grazing yield of pastures and spread over time. Mowing the remaining weeds after grazing is not guaranteed to remove entrenched weeds. Periodic but selective cutting of weeds can be a solution to this problem. However, many weeds share similar textures and structures with grazing plants, making their detection difficult using the classic RGB (Red, Green, Blue) approach. Pixel depth estimation is considered a viable source of data for weed detection. However, systems utilizing RGBD (RGB plus Depth) are computationally expensive, making them nonviable for small, lightweight robots. Substituting one of the RGB bands with depth data could be a solution to this problem. In this study, we examined the effect of band substitution on the performance of lightweight YOLOv8 models using precision, recall and mAP50 metrics. Overall, the RDB band combination proved to be the best option for YOLOv8 small and medium detection models, with 0.621 and 0.634 mAP50 (for a mean average precision at 50% intersection over union) scores, respectively. In both instances, the classic RGB approach yielded lower accuracies of 0.574 and 0.613.

摘要

随着传感器设备成本的降低和单板计算机计算能力的提高,自动化农业机器人正变得越来越普遍。除草是机器人可以用来执行的单调重复任务之一。作物中杂草的检测现在很常见,商业解决方案也在迅速进入市场。然而,在牧场除草方面开展的工作较少。杂草会降低牧场的放牧产量,并随着时间的推移而蔓延。放牧后割除剩余的杂草并不能保证清除根深蒂固的杂草。定期但有选择性地割除杂草可能是解决这个问题的办法。然而,许多杂草与放牧植物具有相似的纹理和结构,使用传统的RGB(红、绿、蓝)方法很难检测到它们。像素深度估计被认为是杂草检测的一个可行数据来源。然而,利用RGBD(RGB加深度)的系统计算成本很高,使其对于小型、轻型机器人不可行。用深度数据替代RGB波段之一可能是解决这个问题的办法。在本研究中,我们使用精度、召回率和mAP50指标研究了波段替换对轻型YOLOv8模型性能的影响。总体而言,RDB波段组合被证明是YOLOv8小型和中型检测模型的最佳选择,其mAP50分数分别为0.621和0.634(对于50%交并比下的平均精度均值)。在这两种情况下,传统的RGB方法的准确率较低,分别为0.574和0.613。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7c/11722834/d0499c938a45/sensors-25-00161-g001.jpg

相似文献

1
2
Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images.
Front Plant Sci. 2021 Nov 5;12:732968. doi: 10.3389/fpls.2021.732968. eCollection 2021.
4
Evaluation of two deep learning-based approaches for detecting weeds growing in cabbage.
Pest Manag Sci. 2024 Jun;80(6):2817-2826. doi: 10.1002/ps.7990. Epub 2024 Feb 7.
5
Weed Detection Using Deep Learning: A Systematic Literature Review.
Sensors (Basel). 2023 Mar 31;23(7):3670. doi: 10.3390/s23073670.
6
An Approach to the Use of Depth Cameras for Weed Volume Estimation.
Sensors (Basel). 2016 Jun 25;16(7):972. doi: 10.3390/s16070972.
7
Semantic segmentation for weed detection in corn.
Pest Manag Sci. 2025 Mar;81(3):1512-1528. doi: 10.1002/ps.8554. Epub 2024 Nov 25.
9
A novel deep learning-based method for detection of weeds in vegetables.
Pest Manag Sci. 2022 May;78(5):1861-1869. doi: 10.1002/ps.6804. Epub 2022 Feb 2.
10
An ultrasonic system for weed detection in cereal crops.
Sensors (Basel). 2012 Dec 13;12(12):17343-57. doi: 10.3390/s121217343.

本文引用的文献

1
Improved YOLOv7-Based Algorithm for Detecting Foreign Objects on the Roof of a Subway Vehicle.
Sensors (Basel). 2023 Nov 27;23(23):9440. doi: 10.3390/s23239440.
2
Monocular Depth Estimation Using Deep Learning: A Review.
Sensors (Basel). 2022 Jul 18;22(14):5353. doi: 10.3390/s22145353.
3
A novel deep learning-based method for detection of weeds in vegetables.
Pest Manag Sci. 2022 May;78(5):1861-1869. doi: 10.1002/ps.6804. Epub 2022 Feb 2.
4
Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images.
Front Plant Sci. 2021 Nov 5;12:732968. doi: 10.3389/fpls.2021.732968. eCollection 2021.
5
Review of Weed Detection Methods Based on Computer Vision.
Sensors (Basel). 2021 May 24;21(11):3647. doi: 10.3390/s21113647.
7
Exploiting Depth From Single Monocular Images for Object Detection and Semantic Segmentation.
IEEE Trans Image Process. 2017 Feb;26(2):836-846. doi: 10.1109/TIP.2016.2621673. Epub 2016 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验