Del-Saz Nestor Fernandez, Douthe Cyril, Carriquí Marc, Ortíz Jose, Sanhueza Carolina, Rivas-Medina Alicia, McDonald Allison, Fernie Alisdair R, Ribas-Carbo Miquel, Gago Jorge, Florez-Sarasa Igor, Flexas Jaume
Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.
Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain.
Front Plant Sci. 2021 Nov 4;12:752795. doi: 10.3389/fpls.2021.752795. eCollection 2021.
The alternative oxidase pathway (AOP) is associated with excess energy dissipation in leaves of terrestrial plants. To address whether this association is less important in palustrine plants, we compared the role of AOP in balancing energy and carbon metabolism in palustrine and terrestrial environments by identifying metabolic relationships between primary carbon metabolites and AOP in each habitat. We measured oxygen isotope discrimination during respiration, gas exchange, and metabolite profiles in aerial leaves of ten fern and angiosperm species belonging to five families organized as pairs of palustrine and terrestrial species. We performed a partial least square model combined with variable importance for projection to reveal relationships between the electron partitioning to the AOP (τ) and metabolite levels. Terrestrial plants showed higher values of net photosynthesis (A) and τ, together with stronger metabolic relationships between τ and sugars, important for water conservation. Palustrine plants showed relationships between τ and metabolites related to the shikimate pathway and the GABA shunt, to be important for heterophylly. Excess energy dissipation AOX is less crucial in palustrine environments than on land. The basis of this difference resides in the contrasting photosynthetic performance observed in each environment, thus reinforcing the importance of AOP for photosynthesis.
交替氧化酶途径(AOP)与陆生植物叶片中的过量能量耗散有关。为了探究这种关联在沼生植物中是否不那么重要,我们通过确定每个生境中主要碳代谢物与AOP之间的代谢关系,比较了AOP在沼生和陆生环境中平衡能量和碳代谢的作用。我们测量了属于五个科的十种蕨类植物和被子植物气生叶在呼吸、气体交换过程中的氧同位素分馏以及代谢物谱,这些植物按沼生和陆生物种对进行分组。我们进行了偏最小二乘模型,并结合投影变量重要性来揭示电子分配到AOP(τ)与代谢物水平之间的关系。陆生植物表现出较高的净光合速率(A)和τ值,以及τ与糖类之间更强的代谢关系,这对水分保持很重要。沼生植物表现出τ与与莽草酸途径和γ-氨基丁酸分流相关的代谢物之间的关系,这对异形叶性很重要。在沼生环境中,过量能量耗散的AOX不如在陆地上那么关键。这种差异的基础在于在每个环境中观察到的光合作用表现的对比,从而强化了AOP对光合作用的重要性。