Florez-Sarasa Igor, Welchen Elina, Racca Sofia, Gonzalez Daniel H, Vallarino José G, Fernie Alisdair R, Ribas-Carbo Miquel, Del-Saz Nestor Fernandez
Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain.
Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
Plants (Basel). 2021 Feb 26;10(3):444. doi: 10.3390/plants10030444.
Plant respiration provides metabolic flexibility under changing environmental conditions by modulating the activity of the nonphosphorylating alternative pathways from the mitochondrial electron transport chain, which bypass the main energy-producing components of the cytochrome oxidase pathway (COP). While adjustments in leaf primary metabolism induced by changes in day length are well studied, possible differences in the contribution of the COP and the alternative oxidase pathway (AOP) between different photoperiods remain unknown. In our study, electron partitioning between AOP and COP and expression analysis of respiratory components, photosynthesis, and the levels of primary metabolites were studied in leaves of wild-type (WT) plants and cytochrome c (CYTc) mutants, with reduced levels of COP components, under short- and long-day photoperiods. Our results clearly show that differences in AOP and COP activities between WT and mutants depend on the photoperiod likely due to energy and stress signaling constraints. Parallel responses observed between respiratory activities, TCA cycle intermediates, amino acids, and stress signaling metabolites indicate the coordination of different pathways of primary metabolism to support growth adaptation under different photoperiods.
植物呼吸作用通过调节线粒体电子传递链中非磷酸化交替途径的活性,在不断变化的环境条件下提供代谢灵活性,该途径绕过了细胞色素氧化酶途径(COP)的主要能量产生成分。虽然由日长变化引起的叶片初级代谢的调整已得到充分研究,但不同光周期下COP和交替氧化酶途径(AOP)贡献的可能差异仍然未知。在我们的研究中,研究了野生型(WT)植物和细胞色素c(CYTc)突变体(COP成分水平降低)在短日照和长日照光周期下叶片中AOP和COP之间的电子分配以及呼吸成分、光合作用和初级代谢物水平的表达分析。我们的结果清楚地表明,WT和突变体之间AOP和COP活性的差异可能取决于光周期,这可能是由于能量和应激信号的限制。在呼吸活性、三羧酸循环中间体、氨基酸和应激信号代谢物之间观察到的平行反应表明,初级代谢的不同途径相互协调,以支持不同光周期下的生长适应。