Suppr超能文献

气孔进化的选择压力。

Selection pressures on stomatal evolution.

作者信息

Raven John A

机构信息

Division of Environmental and Applied Biology, School of Life Sciences, University of Dundee, Biological Sciences Institute, Dundee DD1 4HN, UK.

出版信息

New Phytol. 2002 Mar;153(3):371-386. doi: 10.1046/j.0028-646X.2001.00334.x. Epub 2002 Mar 5.

Abstract

Fossil evidence shows that stomata have occurred in sporophytes and (briefly) gametophytes of embryophytes during the last 400 m yr. Cladistic analyses with hornworts basal are consistent with a unique origin of stomata, although cladograms with hornworts as the deepest branching embryophytes require loss of stomata early in the evolution of liverworts. Functional considerations suggest that stomata evolved from pores in the epidermis of plant organs which were at least three cell layers thick and had intercellular gas spaces and a cuticle; an endohydric conducting system would not have been necessary for low-growing rhizophytes, especially in early Palaeozoic CO -rich atmospheres. The 'prestomatal state' (pores) would have permitted higher photosynthetic rates per unit ground area. Functional stomata, and endohydry, permit the evolution of homoiohydry and the loss of vegetative desiccation tolerance and plants > 1 m tall. Stomatal functioning would then have involved maintenance of hydration, and restricting the occurrence of xylem embolism, under relatively desiccating conditions at the expense of limiting carbon acquisition. The time scale of environmental fluctuations over which stomatal responses can maximize carbon gain per unit water loss varies among taxa and life forms. Contents Summary 371 I. Introduction 371 II. Monophyly of stomata? 372 III. Roles of stomata in extant plants 373 IV. Ecophysiology of ancestrally astomatous terrestrial plants 375 V. Evolution of stomata 379 VI. Ecophysiological implications of losses of stomata 382 VII. Conclusions 384 Acknowledgements 384 References 384.

摘要

化石证据表明,在过去4亿年里,气孔出现在胚植物的孢子体以及(短暂地)配子体中。以角苔为基部类群的分支系统发育分析与气孔的单一起源相一致,尽管以角苔作为最深分支的胚植物的分支图表明,气孔在叶苔类植物进化早期就已消失。功能方面的考虑表明,气孔是从植物器官表皮上的孔进化而来的,这些器官至少有三层细胞厚,具有细胞间隙和气室以及角质层;对于矮小的根生植物来说,尤其是在早古生代富含二氧化碳的大气环境中,内吸性传导系统并非必需。“气孔前状态”(孔)能够使单位地面面积的光合速率更高。功能性气孔以及内吸作用,使得恒水作用得以进化,营养体耐旱性丧失,植株高度超过1米。在相对干燥的条件下,气孔功能的实现需要维持水分含量,并限制木质部栓塞的发生,代价是限制碳的获取。气孔响应能够使单位水分损失的碳增益最大化的环境波动时间尺度因分类群和生活型而异。内容摘要371 一、引言371 二、气孔的单系性?372 三、气孔在现存植物中的作用373 四、祖先无气孔陆生植物的生态生理学375 五、气孔的进化379 六、气孔丧失的生态生理学意义382 七、结论384 致谢384 参考文献384

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验