Suppr超能文献

一种用于检测可卡因使用障碍对功能连接影响的时空模型。

A Spatio-temporal Model for Detecting the Effect of Cocaine Use Disorder on Functional Connectivity.

作者信息

Zhao Jifang, Zhang Qiong, Fuentes Montserrat, Qian Yanjun, Ma Liangsuo, Moeller Gerard

机构信息

Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA.

School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC.

出版信息

Spat Stat. 2021 Oct;45. doi: 10.1016/j.spasta.2021.100530. Epub 2021 Jul 21.

Abstract

Drug addiction can lead to many health-related problems and social concerns. Researchers are interested in the association between long-term drug usage and abnormal functional connectivity. Functional connectivity obtained from functional magnetic resonance imaging data promotes a variety of fundamental understandings in such association. Due to the complex correlation structure and large dimensionality, the modeling and analysis of the functional connectivity from neuroimage are challenging. By proposing a spatio-temporal model for multi-subject neuroimage data, we incorporate voxel-level spatio-temporal dependencies of whole-brain measurements to improve the accuracy of statistical inference. To tackle large-scale spatio-temporal neuroimage data, we develop a computational efficient algorithm to estimate the parameters. Our method is used to first identify functional connectivity, and then detect the effect of cocaine use disorder (CUD) on functional connectivity between different brain regions. The functional connectivity identified by our spatio-temporal model matches existing studies on brain networks, and further indicates that CUD may alter the functional connectivity in the medial orbitofrontal cortex subregions and the supplementary motor areas.

摘要

药物成瘾会导致许多与健康相关的问题和社会问题。研究人员对长期药物使用与异常功能连接之间的关联感兴趣。从功能磁共振成像数据中获得的功能连接促进了对这种关联的各种基本理解。由于复杂的相关结构和高维度,对神经影像中的功能连接进行建模和分析具有挑战性。通过为多主体神经影像数据提出一种时空模型,我们纳入了全脑测量的体素级时空依赖性,以提高统计推断的准确性。为了处理大规模的时空神经影像数据,我们开发了一种计算效率高的算法来估计参数。我们的方法首先用于识别功能连接,然后检测可卡因使用障碍(CUD)对不同脑区之间功能连接的影响。我们的时空模型识别出的功能连接与关于脑网络的现有研究相匹配,并且进一步表明CUD可能会改变内侧眶额皮质子区域和辅助运动区的功能连接。

相似文献

1
A Spatio-temporal Model for Detecting the Effect of Cocaine Use Disorder on Functional Connectivity.
Spat Stat. 2021 Oct;45. doi: 10.1016/j.spasta.2021.100530. Epub 2021 Jul 21.
2
A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data.
Biometrics. 2018 Sep;74(3):823-833. doi: 10.1111/biom.12844. Epub 2018 Jan 22.
3
Spatio-temporal directed acyclic graph learning with attention mechanisms on brain functional time series and connectivity.
Med Image Anal. 2022 Apr;77:102370. doi: 10.1016/j.media.2022.102370. Epub 2022 Jan 30.
4
Distance disintegration characterizes node-level topological dysfunctions in cocaine addiction.
Addict Biol. 2021 Nov;26(6):e13072. doi: 10.1111/adb.13072. Epub 2021 Jun 16.
5
Dynamic changes in the mental rotation network revealed by pattern recognition analysis of fMRI data.
J Cogn Neurosci. 2009 May;21(5):890-904. doi: 10.1162/jocn.2009.21078.
7
Resting state networks in empirical and simulated dynamic functional connectivity.
Neuroimage. 2017 Oct 1;159:388-402. doi: 10.1016/j.neuroimage.2017.07.065. Epub 2017 Aug 3.
8
Disrupted functional connectivity of periaqueductal gray subregions in episodic migraine.
J Headache Pain. 2017 Dec;18(1):36. doi: 10.1186/s10194-017-0747-9. Epub 2017 Mar 21.
9
The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions.
J Neurosci. 2016 Feb 3;36(5):1490-501. doi: 10.1523/JNEUROSCI.2999-15.2016.
10
Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression.
Brain. 2016 Dec;139(Pt 12):3296-3309. doi: 10.1093/brain/aww255. Epub 2016 Oct 14.

本文引用的文献

1
Confound modelling in UK Biobank brain imaging.
Neuroimage. 2021 Jan 1;224:117002. doi: 10.1016/j.neuroimage.2020.117002. Epub 2020 Jun 2.
2
The Multifaceted Role of the Ventromedial Prefrontal Cortex in Emotion, Decision Making, Social Cognition, and Psychopathology.
Biol Psychiatry. 2018 Apr 15;83(8):638-647. doi: 10.1016/j.biopsych.2017.10.030. Epub 2017 Nov 20.
3
Fully Bayesian spectral methods for imaging data.
Biometrics. 2018 Jun;74(2):645-652. doi: 10.1111/biom.12782. Epub 2017 Sep 28.
4
The effect of task difficulty on motor performance and frontal-striatal connectivity in cocaine users.
Drug Alcohol Depend. 2017 Apr 1;173:178-184. doi: 10.1016/j.drugalcdep.2016.12.008. Epub 2017 Jan 21.
5
Functional CAR models for large spatially correlated functional datasets.
J Am Stat Assoc. 2016;111(514):772-786. doi: 10.1080/01621459.2015.1042581. Epub 2016 Aug 18.
6
STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data.
Neuroimage. 2016 Jul 1;134:550-562. doi: 10.1016/j.neuroimage.2016.04.023. Epub 2016 Apr 19.
7
Effect of cocaine dependence on brain connections: clinical implications.
Expert Rev Neurother. 2015;15(11):1307-19. doi: 10.1586/14737175.2015.1103183. Epub 2015 Oct 29.
8
AICHA: An atlas of intrinsic connectivity of homotopic areas.
J Neurosci Methods. 2015 Oct 30;254:46-59. doi: 10.1016/j.jneumeth.2015.07.013. Epub 2015 Jul 23.
9
Spatially Varying Coefficient Model for Neuroimaging Data with Jump Discontinuities.
J Am Stat Assoc. 2014 Jul;109(507):1084-1098. doi: 10.1080/01621459.2014.881742.
10
Spatio-Spectral Mixed Effects Model for Functional Magnetic Resonance Imaging Data.
J Am Stat Assoc. 2012;107(498):568-577. doi: 10.1080/01621459.2012.664503.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验