Suppr超能文献

用于大型空间相关功能数据集的功能CAR模型。

Functional CAR models for large spatially correlated functional datasets.

作者信息

Zhang Lin, Baladandayuthapani Veerabhadran, Zhu Hongxiao, Baggerly Keith A, Majewski Tadeusz, Czerniak Bogdan A, Morris Jeffrey S

机构信息

The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A.

Virginia Tech, Blacksburg, Virginia, U.S.A.

出版信息

J Am Stat Assoc. 2016;111(514):772-786. doi: 10.1080/01621459.2015.1042581. Epub 2016 Aug 18.

Abstract

We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.

摘要

我们为空间相关数据开发了一种功能性条件自回归(CAR)模型,其中函数是在格点的区域单元上收集的。我们的模型在进行功能性响应回归时,考虑了空间和功能域中具有潜在不可分离和非平稳协方差结构的空间相关性。我们从理论上表明,我们的构建在每个功能位置都导致一个CAR模型,空间协方差参数在功能域中变化并借用强度。使用基变换策略,不可分离的空间 - 功能模型在计算上可扩展到巨大的功能数据集,可推广到不同的基函数,并且可用于在诸如图像等高维域上定义的函数。通过模拟研究,我们证明在建模中考虑空间相关性会导致功能性回归性能的提高。应用于高通量空间相关的拷贝数数据集时,该模型识别出被忽略空间相关性的可比方法未识别出的遗传标记。

相似文献

1
Functional CAR models for large spatially correlated functional datasets.用于大型空间相关功能数据集的功能CAR模型。
J Am Stat Assoc. 2016;111(514):772-786. doi: 10.1080/01621459.2015.1042581. Epub 2016 Aug 18.
4
An empirical evaluation of multivariate spatial crash frequency models.多元空间碰撞频率模型的实证评估。
Accid Anal Prev. 2018 Oct;119:290-306. doi: 10.1016/j.aap.2018.07.001. Epub 2018 Aug 10.
8
Modeling nonstationarity in space and time.对时空非平稳性进行建模。
Biometrics. 2017 Sep;73(3):759-768. doi: 10.1111/biom.12656. Epub 2017 Jan 30.

引用本文的文献

4
Ultra-Fast Approximate Inference Using Variational Functional Mixed Models.使用变分函数混合模型的超快速近似推理
J Comput Graph Stat. 2023;32(2):353-365. doi: 10.1080/10618600.2022.2107532. Epub 2022 Oct 4.
5
Fast Multilevel Functional Principal Component Analysis.快速多级功能主成分分析
J Comput Graph Stat. 2023;32(2):366-377. doi: 10.1080/10618600.2022.2115500. Epub 2022 Oct 7.
7
Modeling post-holiday surge in COVID-19 cases in Pennsylvania counties.建模宾夕法尼亚州各县 COVID-19 病例节后激增。
PLoS One. 2022 Dec 19;17(12):e0279371. doi: 10.1371/journal.pone.0279371. eCollection 2022.
8
Fast Univariate Inference for Longitudinal Functional Models.纵向功能模型的快速单变量推断
J Comput Graph Stat. 2022;31(1):219-230. doi: 10.1080/10618600.2021.1950006. Epub 2021 Aug 4.
9
Multilevel Varying Coefficient Spatiotemporal Model.多层变系数时空模型
Stat. 2022 Dec;11(1). doi: 10.1002/sta4.438. Epub 2021 Nov 19.

本文引用的文献

2
Functional Additive Mixed Models.功能加性混合模型
J Comput Graph Stat. 2015 Apr 1;24(2):477-501. doi: 10.1080/10618600.2014.901914.
7
A spatial beta-binomial model for clustered count data on dental caries.针对龋齿的聚类计数数据的空间 Beta-Binomial 模型。
Stat Methods Med Res. 2011 Apr;20(2):85-102. doi: 10.1177/0962280210372453. Epub 2010 May 28.
9
Fast methods for spatially correlated multilevel functional data.快速的空间相关多层函数数据分析方法。
Biostatistics. 2010 Apr;11(2):177-94. doi: 10.1093/biostatistics/kxp058. Epub 2010 Jan 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验