Suppr超能文献

用于大型空间相关功能数据集的功能CAR模型。

Functional CAR models for large spatially correlated functional datasets.

作者信息

Zhang Lin, Baladandayuthapani Veerabhadran, Zhu Hongxiao, Baggerly Keith A, Majewski Tadeusz, Czerniak Bogdan A, Morris Jeffrey S

机构信息

The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A.

Virginia Tech, Blacksburg, Virginia, U.S.A.

出版信息

J Am Stat Assoc. 2016;111(514):772-786. doi: 10.1080/01621459.2015.1042581. Epub 2016 Aug 18.

Abstract

We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.

摘要

我们为空间相关数据开发了一种功能性条件自回归(CAR)模型,其中函数是在格点的区域单元上收集的。我们的模型在进行功能性响应回归时,考虑了空间和功能域中具有潜在不可分离和非平稳协方差结构的空间相关性。我们从理论上表明,我们的构建在每个功能位置都导致一个CAR模型,空间协方差参数在功能域中变化并借用强度。使用基变换策略,不可分离的空间 - 功能模型在计算上可扩展到巨大的功能数据集,可推广到不同的基函数,并且可用于在诸如图像等高维域上定义的函数。通过模拟研究,我们证明在建模中考虑空间相关性会导致功能性回归性能的提高。应用于高通量空间相关的拷贝数数据集时,该模型识别出被忽略空间相关性的可比方法未识别出的遗传标记。

相似文献

1
Functional CAR models for large spatially correlated functional datasets.
J Am Stat Assoc. 2016;111(514):772-786. doi: 10.1080/01621459.2015.1042581. Epub 2016 Aug 18.
2
Modeling crash spatial heterogeneity: random parameter versus geographically weighting.
Accid Anal Prev. 2015 Feb;75:16-25. doi: 10.1016/j.aap.2014.10.020. Epub 2014 Nov 16.
4
An empirical evaluation of multivariate spatial crash frequency models.
Accid Anal Prev. 2018 Oct;119:290-306. doi: 10.1016/j.aap.2018.07.001. Epub 2018 Aug 10.
5
Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects.
Accid Anal Prev. 2015 Sep;82:192-8. doi: 10.1016/j.aap.2015.05.018. Epub 2015 Jun 16.
6
Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.
Stat Methods Med Res. 2016 Aug;25(4):1118-44. doi: 10.1177/0962280216660419.
8
Modeling nonstationarity in space and time.
Biometrics. 2017 Sep;73(3):759-768. doi: 10.1111/biom.12656. Epub 2017 Jan 30.
9
A stochastic neighborhood conditional autoregressive model for spatial data.
Comput Stat Data Anal. 2009 Jun 15;53(8):3033-3046. doi: 10.1016/j.csda.2008.08.010.

引用本文的文献

1
A canonical polyadic tensor basis for fast Bayesian estimation of multi-subject brain activation patterns.
Front Neuroinform. 2024 Aug 12;18:1399391. doi: 10.3389/fninf.2024.1399391. eCollection 2024.
2
From multivariate to functional data analysis: fundamentals, recent developments, and emerging areas.
J Multivar Anal. 2022 Mar;188. doi: 10.1016/j.jmva.2021.104806. Epub 2021 Aug 18.
3
Functional Bayesian networks for discovering causality from multivariate functional data.
Biometrics. 2023 Dec;79(4):3279-3293. doi: 10.1111/biom.13922. Epub 2023 Aug 28.
4
Ultra-Fast Approximate Inference Using Variational Functional Mixed Models.
J Comput Graph Stat. 2023;32(2):353-365. doi: 10.1080/10618600.2022.2107532. Epub 2022 Oct 4.
5
Fast Multilevel Functional Principal Component Analysis.
J Comput Graph Stat. 2023;32(2):366-377. doi: 10.1080/10618600.2022.2115500. Epub 2022 Oct 7.
6
Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency.
J Bus Econ Stat. 2022;40(4):1523-1537. doi: 10.1080/07350015.2021.1938085. Epub 2021 Jul 12.
7
Modeling post-holiday surge in COVID-19 cases in Pennsylvania counties.
PLoS One. 2022 Dec 19;17(12):e0279371. doi: 10.1371/journal.pone.0279371. eCollection 2022.
8
Fast Univariate Inference for Longitudinal Functional Models.
J Comput Graph Stat. 2022;31(1):219-230. doi: 10.1080/10618600.2021.1950006. Epub 2021 Aug 4.
9
Multilevel Varying Coefficient Spatiotemporal Model.
Stat. 2022 Dec;11(1). doi: 10.1002/sta4.438. Epub 2021 Nov 19.
10
Fixed-effects inference and tests of correlation for longitudinal functional data.
Stat Med. 2022 Jul 30;41(17):3349-3364. doi: 10.1002/sim.9421. Epub 2022 May 1.

本文引用的文献

1
MODELING TEMPORAL GRADIENTS IN REGIONALLY AGGREGATED CALIFORNIA ASTHMA HOSPITALIZATION DATA.
Ann Appl Stat. 2013;7(1):154-176. doi: 10.1214/12-AOAS600. Epub 2013 Apr 9.
2
Functional Additive Mixed Models.
J Comput Graph Stat. 2015 Apr 1;24(2):477-501. doi: 10.1080/10618600.2014.901914.
3
Structured functional additive regression in reproducing kernel Hilbert spaces.
J R Stat Soc Series B Stat Methodol. 2014 Jun 1;76(3):581-603. doi: 10.1111/rssb.12036.
5
Robust, Adaptive Functional Regression in Functional Mixed Model Framework.
J Am Stat Assoc. 2011 Sep 1;106(495):1167-1179. doi: 10.1198/jasa.2011.tm10370.
6
Space-time latent component modeling of geo-referenced health data.
Stat Med. 2010 Aug 30;29(19):2012-27. doi: 10.1002/sim.3917.
7
A spatial beta-binomial model for clustered count data on dental caries.
Stat Methods Med Res. 2011 Apr;20(2):85-102. doi: 10.1177/0962280210372453. Epub 2010 May 28.
8
Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data.
J Am Stat Assoc. 2010 Mar 1;105(489):390-400. doi: 10.1198/jasa.2010.tm08737.
9
Fast methods for spatially correlated multilevel functional data.
Biostatistics. 2010 Apr;11(2):177-94. doi: 10.1093/biostatistics/kxp058. Epub 2010 Jan 19.
10
Modelling spatially correlated survival data for individuals with multiple cancers.
Stat Modelling. 2007 Jul 1;7(2):191-213. doi: 10.1177/1471082X0700700205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验