Zhang Lin, Baladandayuthapani Veerabhadran, Zhu Hongxiao, Baggerly Keith A, Majewski Tadeusz, Czerniak Bogdan A, Morris Jeffrey S
The University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A.
Virginia Tech, Blacksburg, Virginia, U.S.A.
J Am Stat Assoc. 2016;111(514):772-786. doi: 10.1080/01621459.2015.1042581. Epub 2016 Aug 18.
We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.
我们为空间相关数据开发了一种功能性条件自回归(CAR)模型,其中函数是在格点的区域单元上收集的。我们的模型在进行功能性响应回归时,考虑了空间和功能域中具有潜在不可分离和非平稳协方差结构的空间相关性。我们从理论上表明,我们的构建在每个功能位置都导致一个CAR模型,空间协方差参数在功能域中变化并借用强度。使用基变换策略,不可分离的空间 - 功能模型在计算上可扩展到巨大的功能数据集,可推广到不同的基函数,并且可用于在诸如图像等高维域上定义的函数。通过模拟研究,我们证明在建模中考虑空间相关性会导致功能性回归性能的提高。应用于高通量空间相关的拷贝数数据集时,该模型识别出被忽略空间相关性的可比方法未识别出的遗传标记。