Suppr超能文献

潮湿气氛中热加工过程中UO内的氧同位素分馏

Oxygen Isotope Fractionation in UO during Thermal Processing in Humid Atmospheres.

作者信息

Klosterman Michael R, Oerter Erik J, Singleton Michael J, McDonald Luther W

机构信息

Department of Civil & Environmental Engineering, Nuclear Engineering Program, University of Utah, 201 President's Circle, Salt Lake City, Utah 84112, United States.

Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.

出版信息

ACS Omega. 2022 Jan 19;7(4):3462-3469. doi: 10.1021/acsomega.1c05838. eCollection 2022 Feb 1.

Abstract

The incorporation of oxygen isotopes from water into uranium oxides during industrial processing presents a pathway for determining a material's geographical origin. This study is founded on the hypothesis that oxygen isotopes from atmospheric water vapor will exchange with isotopes of oxygen in solid uranium oxides during thermal processing or calcination. Using a commonly encountered oxide, UO, the exchange kinetics and equilibrium fractionation with water vapor (in a concentration range of 50-55% relative humidity) were investigated using processing temperatures of 400, 600, and 800 °C. In an atmosphere containing only water vapor diluted in N, oxygen isotope equilibration in UO occurred within 12 h at 400 °C and within 2 h at 600 and 800 °C. Fractionation factors (1000lnα, UO-HO) between the water and oxide were -12.1, -11.0, and -8.0 at 400, 600, and 800 °C, respectively. With both humidity and O present in the calcining atmosphere, isotopic equilibration is attained within 2 h at and above 400 °C. In this mixed atmosphere, which was designed to emulate Earth's troposphere, isotopes are incorporated preferentially from water vapor at 400 °C and from O at 600 and 800 °C. Rapid and temperature/species-dependent isotope exchange also elucidated the impact of retrograde exchange in humid air, showing a shift from O-dependent to HO-dependent fractionation as UO cooled from 800 °C. These results confirm that uranium oxides inherit oxygen isotopes from humidity during thermal processing, illuminating an important mechanism in the formation of this forensic signature.

摘要

在工业加工过程中,水中的氧同位素掺入氧化铀中,为确定材料的地理来源提供了一条途径。本研究基于这样一个假设:大气水汽中的氧同位素在热处理或煅烧过程中会与固体氧化铀中的氧同位素发生交换。使用一种常见的氧化物UO,在400、600和800℃的加工温度下,研究了与水汽(相对湿度在50 - 55%范围内)的交换动力学和平衡分馏。在仅含有稀释于氮气中的水汽的气氛中,UO中的氧同位素在400℃下12小时内达到平衡,在600℃和800℃下2小时内达到平衡。水与氧化物之间的分馏因子(1000lnα,UO - H₂O)在400℃、600℃和800℃时分别为 - 12.1、 - 11.0和 - 8.0。当煅烧气氛中同时存在湿度和O时,在400℃及以上温度2小时内即可达到同位素平衡。在这种旨在模拟地球对流层的混合气氛中,同位素在400℃时优先从水汽中掺入,在600℃和800℃时从O中掺入。快速且依赖温度/物种的同位素交换还阐明了潮湿空气中逆行交换的影响,表明随着UO从800℃冷却,分馏从依赖O转变为依赖H₂O。这些结果证实,氧化铀在热处理过程中从湿度中继承氧同位素,揭示了这种法医特征形成中的一个重要机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9032/8811886/505edf7292c8/ao1c05838_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验