Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico.
Centro Tecnológico, Facultad de Estudios Superiores (FES-Aragón), Universidad Nacional Autónoma de México, Estado de México, CP 57130, Mexico.
Analyst. 2021 Dec 6;146(24):7653-7669. doi: 10.1039/d1an01408k.
Pharmaceutical effluents are a serious environmental issue, which require to be treated by a suitable technique; thus, the electrochemical process is actively considered as a viable method for the treatment. In this work, new carbon paste electrodes (CPEs) were fabricated by compressing gold and silver nanoparticles (NPs), namely, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs and then completely characterized by different analytical methods. The performance of the electrodes was studied after determining their surface area (×10 cm) as 4.17, 5.05, 5.27, and 5.12, producing high anodic currents for K[Fe(CN)] compared to the commercial electrode. This agrees with the results of impedance study, where the electron transfer rate constants (, ×10 cm s) were determined to be 28.7, 42.6, 41.0, and 101.4 for CPE, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively, through the Bode plot-phase shifts. This is consistent with the charge transfer resistance (, Ω), resulting as 171 for CPE/Ag/Au NPs < 395 for CPE/Ag NPs < 427 for CPE/Au NPs and < 742 for CPE. Therefore, these electrodes were employed to detect trimethoprim (TMP) since metallic NPs contribute good crystallinity, stability, conduciveness, and surface plasmon resonance to the CPE, convalescing the sensitivity; comprehensively, they were applied for its detection in real water and human urine samples, and the limit of detection (LOD) was as low as 0.026, 0.032, and 0.026 μmol L for CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively. In contrast, unmodified CPE was unable to detect TMP due to the lack of efficiency. The developed technique shows excellent electrochemical recovery of 92.3 and 97.1% in the urine sample. Density functional theory (DFT) was used to explain the impact of the metallic center in graphite through density of states (DOS).
制药废水是一个严重的环境问题,需要通过合适的技术进行处理;因此,电化学过程被积极地认为是一种可行的处理方法。在这项工作中,通过压缩金和银纳米粒子(NPs)制备了新型碳糊电极(CPE),即 CPE/Ag NPs、CPE/Au NPs 和 CPE/Ag/Au NPs,并通过不同的分析方法对其进行了完全表征。通过确定其比表面积(×10 cm)分别为 4.17、5.05、5.27 和 5.12,发现 CPE/Ag NPs、CPE/Au NPs 和 CPE/Ag/Au NPs 对 K[Fe(CN)]6 的阳极电流较高,与商业电极相比。这与阻抗研究的结果一致,通过 Bode 图相位移动,确定电子转移速率常数(,×10 cm s)分别为 28.7、42.6、41.0 和 101.4,对于 CPE、CPE/Ag NPs、CPE/Au NPs 和 CPE/Ag/Au NPs。这与电荷转移电阻(,Ω)一致,结果为 CPE/Ag/Au NPs 为 171 < CPE/Ag NPs 为 395 < CPE/Au NPs 为 427 < CPE 为 742。因此,这些电极被用于检测甲氧苄啶(TMP),因为金属 NPs 为 CPE 提供了良好的结晶度、稳定性、导电性和表面等离子体共振,从而恢复了灵敏度;综合来看,它们被应用于实际水样和人尿样中的检测,检出限(LOD)分别为 CPE/Ag NPs 为 0.026、CPE/Au NPs 为 0.032 和 CPE/Ag/Au NPs 为 0.026 μmol L。相比之下,由于效率低下,未修饰的 CPE 无法检测 TMP。该方法在尿液样本中的电化学回收率高达 92.3%和 97.1%。密度泛函理论(DFT)被用于通过态密度(DOS)解释金属中心在石墨中的影响。