Li Jianming, Tang Chen, Xu Min, Fan Zirui, Lei Zhenkun
Appl Opt. 2021 Nov 10;60(32):10070-10079. doi: 10.1364/AO.442293.
In this paper, we propose a dilated-blocks-based deep convolution neural network, named DBDNet, for denoising in electronic speckle pattern interferometry (ESPI) wrapped phase patterns with high density and high speckle noise. In our method, the proposed dilated blocks have a specific sequence of dilation rate and a multilayer cascading fusion structure, which can better improve the effect of speckle noise reduction, especially for phase patterns with high noise and high density. Furthermore, we have built an abundant training dataset with varieties of densities and noise levels to train our network; thus, the trained model has a good generalization and can denoise ESPI wrapped phase in various circumstances. The network can get denoised results directly and does not need any pre-process or post-process. We test our method on one group of computer-simulated ESPI phase patterns and one group of experimentally obtained ESPI phase patterns. The test images have a high degree of speckle noise and different densities. We compare our method with two representative methods in the spatial domain and frequency domain, named oriented-couple partial differential equation and windowed Fourier low pass filter (LPF), and a method based on deep learning, named fast and flexible denoising convolutional neural network (FFDNet). The denoising performance is evaluated quantitatively and qualitatively. The results demonstrate that our method can reduce high speckle noise and restore the dense areas of ESPI phase patterns, and get better results than the compared methods. We also apply our method to a series of phase patterns from a dynamic measurement and get successful results.
在本文中,我们提出了一种基于扩张块的深度卷积神经网络,名为DBDNet,用于对具有高密度和高散斑噪声的电子散斑图案干涉术(ESPI)包裹相位图案进行去噪。在我们的方法中,所提出的扩张块具有特定的扩张率序列和多层级联融合结构,这可以更好地提高散斑噪声降低效果,特别是对于高噪声和高密度的相位图案。此外,我们构建了一个包含各种密度和噪声水平的丰富训练数据集来训练我们的网络;因此,训练后的模型具有良好的泛化能力,能够在各种情况下对ESPI包裹相位进行去噪。该网络可以直接获得去噪结果,无需任何预处理或后处理。我们在一组计算机模拟的ESPI相位图案和一组实验获得的ESPI相位图案上测试了我们的方法。测试图像具有高度的散斑噪声和不同的密度。我们将我们的方法与空间域和频率域中的两种代表性方法(定向耦合偏微分方程和加窗傅里叶低通滤波器(LPF))以及一种基于深度学习的方法(快速灵活去噪卷积神经网络(FFDNet))进行了比较。通过定量和定性评估去噪性能。结果表明,我们的方法可以降低高散斑噪声并恢复ESPI相位图案的密集区域,并且比比较方法获得更好的结果。我们还将我们的方法应用于动态测量中的一系列相位图案,并取得了成功的结果。