Burke Jamie, King Stuart
IEEE Trans Image Process. 2022;31:138-148. doi: 10.1109/TIP.2021.3128329. Epub 2021 Nov 30.
We introduce a novel edge tracing algorithm using Gaussian process regression. Our edge-based segmentation algorithm models an edge of interest using Gaussian process regression and iteratively searches the image for edge pixels in a recursive Bayesian scheme. This procedure combines local edge information from the image gradient and global structural information from posterior curves, sampled from the model's posterior predictive distribution, to sequentially build and refine an observation set of edge pixels. This accumulation of pixels converges the distribution to the edge of interest. Hyperparameters can be tuned by the user at initialisation and optimised given the refined observation set. This tunable approach does not require any prior training and is not restricted to any particular type of imaging domain. Due to the model's uncertainty quantification, the algorithm is robust to artefacts and occlusions which degrade the quality and continuity of edges in images. Our approach also has the ability to efficiently trace edges in image sequences by using previous-image edge traces as a priori information for consecutive images. Various applications to medical imaging and satellite imaging are used to validate the technique and comparisons are made with two commonly used edge tracing algorithms.
我们介绍了一种使用高斯过程回归的新型边缘跟踪算法。我们基于边缘的分割算法使用高斯过程回归对感兴趣的边缘进行建模,并在递归贝叶斯方案中迭代地在图像中搜索边缘像素。该过程结合了来自图像梯度的局部边缘信息和从模型的后验预测分布中采样的后验曲线的全局结构信息,以顺序构建和完善边缘像素的观测集。这种像素的积累使分布收敛到感兴趣的边缘。超参数可以在初始化时由用户调整,并在给定细化的观测集的情况下进行优化。这种可调整的方法不需要任何先验训练,并且不限于任何特定类型的成像领域。由于模型的不确定性量化,该算法对降低图像中边缘质量和连续性的伪像和遮挡具有鲁棒性。我们的方法还能够通过使用前一图像的边缘轨迹作为连续图像的先验信息来有效地跟踪图像序列中的边缘。在医学成像和卫星成像中的各种应用被用于验证该技术,并与两种常用的边缘跟踪算法进行了比较。