School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.
Centre for Medical Informatics, University of Edinburgh, Edinburgh, United Kingdom.
Invest Ophthalmol Vis Sci. 2024 Jun 3;65(6):6. doi: 10.1167/iovs.65.6.6.
To develop Choroidalyzer, an open-source, end-to-end pipeline for segmenting the choroid region, vessels, and fovea, and deriving choroidal thickness, area, and vascular index.
We used 5600 OCT B-scans (233 subjects, six systemic disease cohorts, three device types, two manufacturers). To generate region and vessel ground-truths, we used state-of-the-art automatic methods following manual correction of inaccurate segmentations, with foveal positions manually annotated. We trained a U-Net deep learning model to detect the region, vessels, and fovea to calculate choroid thickness, area, and vascular index in a fovea-centered region of interest. We analyzed segmentation agreement (AUC, Dice) and choroid metrics agreement (Pearson, Spearman, mean absolute error [MAE]) in internal and external test sets. We compared Choroidalyzer to two manual graders on a small subset of external test images and examined cases of high error.
Choroidalyzer took 0.299 seconds per image on a standard laptop and achieved excellent region (Dice: internal 0.9789, external 0.9749), very good vessel segmentation performance (Dice: internal 0.8817, external 0.8703), and excellent fovea location prediction (MAE: internal 3.9 pixels, external 3.4 pixels). For thickness, area, and vascular index, Pearson correlations were 0.9754, 0.9815, and 0.8285 (internal)/0.9831, 0.9779, 0.7948 (external), respectively (all P < 0.0001). Choroidalyzer's agreement with graders was comparable to the intergrader agreement across all metrics.
Choroidalyzer is an open-source, end-to-end pipeline that accurately segments the choroid and reliably extracts thickness, area, and vascular index. Especially choroidal vessel segmentation is a difficult and subjective task, and fully automatic methods like Choroidalyzer could provide objectivity and standardization.
开发 Choroidalyzer,这是一个用于分割脉络膜区域、血管和中央凹,并得出脉络膜厚度、面积和血管指数的开源端到端管道。
我们使用了 5600 个 OCT B 扫描(233 名受试者,六个系统性疾病队列,三种设备类型,两个制造商)。为了生成区域和血管的真实数据,我们使用了最先进的自动方法,在手动纠正不准确的分割后,手动标记中央凹的位置。我们训练了一个 U-Net 深度学习模型来检测区域、血管和中央凹,以计算以中央凹为中心的感兴趣区域中的脉络膜厚度、面积和血管指数。我们在内部和外部测试集中分析了分割一致性(AUC、Dice)和脉络膜指标一致性(Pearson、Spearman、平均绝对误差 [MAE])。我们在一小部分外部测试图像上比较了 Choroidalyzer 与两名手动分级员的表现,并检查了高误差的情况。
Choroidalyzer 在标准笔记本电脑上每张图像需要 0.299 秒,实现了出色的区域(Dice:内部 0.9789,外部 0.9749)、非常好的血管分割性能(Dice:内部 0.8817,外部 0.8703)和出色的中央凹位置预测(MAE:内部 3.9 像素,外部 3.4 像素)。对于厚度、面积和血管指数,Pearson 相关系数分别为 0.9754、0.9815 和 0.8285(内部)/0.9831、0.9779 和 0.7948(外部)(均 P < 0.0001)。Choroidalyzer 与分级员的一致性与所有指标的分级员间一致性相当。
Choroidalyzer 是一个开源的端到端管道,能够准确地分割脉络膜,并可靠地提取厚度、面积和血管指数。特别是脉络膜血管分割是一项困难且主观的任务,像 Choroidalyzer 这样的全自动方法可以提供客观性和标准化。