Suppr超能文献

脉络膜分析仪:光学相干断层扫描中脉络膜分析的开源端到端管道。

Choroidalyzer: An Open-Source, End-to-End Pipeline for Choroidal Analysis in Optical Coherence Tomography.

机构信息

School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.

Centre for Medical Informatics, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

Invest Ophthalmol Vis Sci. 2024 Jun 3;65(6):6. doi: 10.1167/iovs.65.6.6.

Abstract

PURPOSE

To develop Choroidalyzer, an open-source, end-to-end pipeline for segmenting the choroid region, vessels, and fovea, and deriving choroidal thickness, area, and vascular index.

METHODS

We used 5600 OCT B-scans (233 subjects, six systemic disease cohorts, three device types, two manufacturers). To generate region and vessel ground-truths, we used state-of-the-art automatic methods following manual correction of inaccurate segmentations, with foveal positions manually annotated. We trained a U-Net deep learning model to detect the region, vessels, and fovea to calculate choroid thickness, area, and vascular index in a fovea-centered region of interest. We analyzed segmentation agreement (AUC, Dice) and choroid metrics agreement (Pearson, Spearman, mean absolute error [MAE]) in internal and external test sets. We compared Choroidalyzer to two manual graders on a small subset of external test images and examined cases of high error.

RESULTS

Choroidalyzer took 0.299 seconds per image on a standard laptop and achieved excellent region (Dice: internal 0.9789, external 0.9749), very good vessel segmentation performance (Dice: internal 0.8817, external 0.8703), and excellent fovea location prediction (MAE: internal 3.9 pixels, external 3.4 pixels). For thickness, area, and vascular index, Pearson correlations were 0.9754, 0.9815, and 0.8285 (internal)/0.9831, 0.9779, 0.7948 (external), respectively (all P < 0.0001). Choroidalyzer's agreement with graders was comparable to the intergrader agreement across all metrics.

CONCLUSIONS

Choroidalyzer is an open-source, end-to-end pipeline that accurately segments the choroid and reliably extracts thickness, area, and vascular index. Especially choroidal vessel segmentation is a difficult and subjective task, and fully automatic methods like Choroidalyzer could provide objectivity and standardization.

摘要

目的

开发 Choroidalyzer,这是一个用于分割脉络膜区域、血管和中央凹,并得出脉络膜厚度、面积和血管指数的开源端到端管道。

方法

我们使用了 5600 个 OCT B 扫描(233 名受试者,六个系统性疾病队列,三种设备类型,两个制造商)。为了生成区域和血管的真实数据,我们使用了最先进的自动方法,在手动纠正不准确的分割后,手动标记中央凹的位置。我们训练了一个 U-Net 深度学习模型来检测区域、血管和中央凹,以计算以中央凹为中心的感兴趣区域中的脉络膜厚度、面积和血管指数。我们在内部和外部测试集中分析了分割一致性(AUC、Dice)和脉络膜指标一致性(Pearson、Spearman、平均绝对误差 [MAE])。我们在一小部分外部测试图像上比较了 Choroidalyzer 与两名手动分级员的表现,并检查了高误差的情况。

结果

Choroidalyzer 在标准笔记本电脑上每张图像需要 0.299 秒,实现了出色的区域(Dice:内部 0.9789,外部 0.9749)、非常好的血管分割性能(Dice:内部 0.8817,外部 0.8703)和出色的中央凹位置预测(MAE:内部 3.9 像素,外部 3.4 像素)。对于厚度、面积和血管指数,Pearson 相关系数分别为 0.9754、0.9815 和 0.8285(内部)/0.9831、0.9779 和 0.7948(外部)(均 P < 0.0001)。Choroidalyzer 与分级员的一致性与所有指标的分级员间一致性相当。

结论

Choroidalyzer 是一个开源的端到端管道,能够准确地分割脉络膜,并可靠地提取厚度、面积和血管指数。特别是脉络膜血管分割是一项困难且主观的任务,像 Choroidalyzer 这样的全自动方法可以提供客观性和标准化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b23/11156207/b23c0f7ba9f9/iovs-65-6-6-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验