School of Mathematics, University of Edinburgh, Edinburgh, UK.
School of Informatics, University of Edinburgh, Edinburgh, UK.
Transl Vis Sci Technol. 2023 Nov 1;12(11):27. doi: 10.1167/tvst.12.11.27.
To develop an open-source, fully automatic deep learning algorithm, DeepGPET, for choroid region segmentation in optical coherence tomography (OCT) data.
We used a dataset of 715 OCT B-scans (82 subjects, 115 eyes) from three clinical studies related to systemic disease. Ground-truth segmentations were generated using a clinically validated, semiautomatic choroid segmentation method, Gaussian Process Edge Tracing (GPET). We finetuned a U-Net with the MobileNetV3 backbone pretrained on ImageNet. Standard segmentation agreement metrics, as well as derived measures of choroidal thickness and area, were used to evaluate DeepGPET, alongside qualitative evaluation from a clinical ophthalmologist.
DeepGPET achieved excellent agreement with GPET on data from three clinical studies (AUC = 0.9994, Dice = 0.9664; Pearson correlation = 0.8908 for choroidal thickness and 0.9082 for choroidal area), while reducing the mean processing time per image on a standard laptop CPU from 34.49 ± 15.09 seconds using GPET to 1.25 ± 0.10 seconds using DeepGPET. Both methods performed similarly according to a clinical ophthalmologist who qualitatively judged a subset of segmentations by GPET and DeepGPET, based on smoothness and accuracy of segmentations.
DeepGPET, a fully automatic, open-source algorithm for choroidal segmentation, will enable researchers to efficiently extract choroidal measurements, even for large datasets. As no manual interventions are required, DeepGPET is less subjective than semiautomatic methods and could be deployed in clinical practice without requiring a trained operator.
DeepGPET addresses the lack of open-source, fully automatic, and clinically relevant choroid segmentation algorithms, and its subsequent public release will facilitate future choroidal research in both ophthalmology and wider systemic health.
开发一种开源的、全自动的深度学习算法 DeepGPET,用于光学相干断层扫描(OCT)数据中的脉络膜区域分割。
我们使用了来自三个与系统性疾病相关的临床研究的 715 个 OCT B 扫描(82 名受试者,115 只眼)数据集。使用一种经过临床验证的半自动脉络膜分割方法,即高斯过程边缘跟踪(GPET),生成地面真实分割。我们使用在 ImageNet 上预训练的 MobileNetV3 骨干网络对 U-Net 进行微调。使用标准的分割一致性度量,以及衍生的脉络膜厚度和面积度量,来评估 DeepGPET,同时还结合了一位临床眼科医生的定性评估。
DeepGPET 在来自三个临床研究的数据上与 GPET 达成了极好的一致性(AUC=0.9994,Dice=0.9664;脉络膜厚度的 Pearson 相关系数为 0.8908,脉络膜面积的 Pearson 相关系数为 0.9082),同时将使用 GPET 对标准笔记本电脑 CPU 上每张图像的平均处理时间从 34.49±15.09 秒减少到 1.25±0.10 秒。根据一位临床眼科医生对一部分使用 GPET 和 DeepGPET 进行分割的图像进行的定性判断,这两种方法的表现相似,判断标准是分割的平滑度和准确性。
DeepGPET 是一种全自动的开源脉络膜分割算法,它将使研究人员能够高效地提取脉络膜测量值,即使是对于大型数据集也是如此。由于不需要手动干预,因此 DeepGPET 比半自动方法更客观,并且可以在不需要经过培训的操作人员的情况下在临床实践中部署。
医麦客