Suppr超能文献

基于酶纳米反应器的快速样品制备工作流程,用于胰腺癌潜在血清生物标志物的发现。

Rapid sample preparation workflow based on enzymatic nanoreactors for potential serum biomarker discovery in pancreatic cancer.

机构信息

The Fifth People Hospital, Fudan University, And the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institute of Biomedical Science, Fudan University, Shanghai, 200433, China.

Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.

出版信息

Talanta. 2022 Feb 1;238(Pt 2):123018. doi: 10.1016/j.talanta.2021.123018. Epub 2021 Nov 5.

Abstract

Mass spectrometry (MS)-based proteomics have been extensively applied in clinical practice to discover potential protein and peptide biomarkers. However, the traditional sample pretreatment workflow remains labor-intensive and time-consuming, which limits the application of MS-based proteomic biomarker discovery studies in a high throughput manner. In the current work, we improved the previously reported procedure of the simple and rapid sample preparation methods (RSP) by introducing macroporous ordered siliceous foams (MOSF), namely RSP-MOSF. With the aid of MOSF, we further reduced the digestion time to 10 min, facilitating the whole sample handling process within 30 min. Combining with 30 min direct data independent acquisition (DIA) of LC-MS/MS, we accomplished a serum sample analysis in 1 h. Comparing with the RSP method, the performance of protein and peptide identification, quantitation, as well as the reproducibility of RSP-MOSF is comparable or even outperformed the RSP method. We further applied this workflow to analyze serum samples for potential candidate biomarker discovery of pancreatic cancer. Overall, 576 serum proteins were detected with 41 proteins significantly changed, which could serve as potential biomarkers for pancreatic cancer. Additionally, we evaluated the performance of RSP-MOSF method in a 96-well plate format which demonstrated an excellent reproducibility of the analysis. These results indicated that RSP-MOSF method had the potential to be applied on an automatic platform for further scaled analysis.

摘要

基于质谱(MS)的蛋白质组学已广泛应用于临床实践,以发现潜在的蛋白质和肽生物标志物。然而,传统的样本预处理工作流程仍然繁琐且耗时,这限制了基于 MS 的蛋白质组学生物标志物发现研究以高通量的方式进行。在本研究中,我们通过引入大孔有序硅泡沫(MOSF)改进了之前报道的简单快速样品制备方法(RSP)的程序,即 RSP-MOSF。借助 MOSF,我们将消化时间进一步缩短至 10 分钟,将整个样品处理过程缩短至 30 分钟内。结合 30 分钟的直接数据独立采集(DIA)LC-MS/MS,我们在 1 小时内完成了血清样本分析。与 RSP 方法相比,RSP-MOSF 的蛋白质和肽鉴定、定量性能以及重复性与 RSP 方法相当,甚至更好。我们进一步将该工作流程应用于分析胰腺癌潜在候选生物标志物的血清样本。总体而言,检测到 576 种血清蛋白,其中 41 种蛋白显著变化,可作为胰腺癌的潜在生物标志物。此外,我们评估了 RSP-MOSF 方法在 96 孔板格式中的性能,结果表明该分析具有出色的重现性。这些结果表明,RSP-MOSF 方法具有在自动平台上进一步进行规模化分析的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验