Suppr超能文献

基于光学衍射深度神经网络的轨道角动量模式分插复用器。

Optical diffractive deep neural network-based orbital angular momentum mode add-drop multiplexer.

作者信息

Xiong Wenjie, Huang Zebin, Wang Peipei, Wang Xinrou, He Yanliang, Wang Chaofeng, Liu Junmin, Ye Huapeng, Fan Dianyuan, Chen Shuqing

出版信息

Opt Express. 2021 Oct 25;29(22):36936-36952. doi: 10.1364/OE.441905.

Abstract

Vortex beams have application potential in multiplexing communication because of their orthogonal orbital angular momentum (OAM) modes. OAM add-drop multiplexing remains a challenge owing to the lack of mode selective coupling and separation technologies. We proposed an OAM add-drop multiplexer (OADM) using an optical diffractive deep neural network (ODNN). By exploiting the effective data-fitting capability of deep neural networks and the complex light-field manipulation ability of multilayer diffraction screens, we constructed a five-layer ODNN to manipulate the spatial location of vortex beams, which can selectively couple and separate OAM modes. Both the diffraction efficiency and mode purity exceeded 95% in simulations and four OAM channels carrying 16-quadrature-amplitude-modulation signals were successfully downloaded and uploaded with optical signal-to-noise ratio penalties of ∼1 dB at a bit error rate of 3.8 × 10. This method can break through the constraints of conventional OADM, such as single function and poor flexibility, which may create new opportunities for OAM multiplexing and all-optical interconnection.

摘要

涡旋光束因其正交轨道角动量(OAM)模式而在复用通信中具有应用潜力。由于缺乏模式选择性耦合和分离技术,OAM分插复用仍然是一个挑战。我们提出了一种使用光学衍射深度神经网络(ODNN)的OAM分插复用器(OADM)。通过利用深度神经网络的有效数据拟合能力和多层衍射屏的复杂光场操纵能力,我们构建了一个五层ODNN来操纵涡旋光束的空间位置,它可以选择性地耦合和分离OAM模式。在模拟中,衍射效率和模式纯度均超过95%,并且成功下载和上传了四个携带16正交幅度调制信号的OAM通道,在误码率为3.8×10时,光信噪比惩罚约为1 dB。该方法可以突破传统OADM的单一功能和灵活性差等限制,这可能为OAM复用和全光互连创造新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验