Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Nat Commun. 2022 Dec 7;13(1):7531. doi: 10.1038/s41467-022-35349-4.
Retrieving the pupil phase of a beam path is a central problem for optical systems across scales, from telescopes, where the phase information allows for aberration correction, to the imaging of near-transparent biological samples in phase contrast microscopy. Current phase retrieval schemes rely on complex digital algorithms that process data acquired from precise wavefront sensors, reconstructing the optical phase information at great expense of computational resources. Here, we present a compact optical-electronic module based on multi-layered diffractive neural networks printed on imaging sensors, capable of directly retrieving Zernike-based pupil phase distributions from an incident point spread function. We demonstrate this concept numerically and experimentally, showing the direct pupil phase retrieval of superpositions of the first 14 Zernike polynomials. The integrability of the diffractive elements with CMOS sensors shows the potential for the direct extraction of the pupil phase information from a detector module without additional digital post-processing.
获取光束路径的瞳孔相位是跨尺度光学系统的一个核心问题,从望远镜(相位信息可用于像差校正)到相衬显微镜中近透明生物样本的成像。当前的相位恢复方案依赖于复杂的数字算法,这些算法处理从精确波前传感器获得的数据,以大量的计算资源为代价来重建光学相位信息。在这里,我们提出了一种基于成像传感器上印刷的多层衍射神经网络的紧凑型光电模块,能够直接从入射点扩散函数中恢复基于泽尼克的瞳孔相位分布。我们通过数值和实验证明了这一概念,展示了前 14 个泽尼克多项式的叠加的直接瞳孔相位恢复。衍射元件与 CMOS 传感器的集成性表明,有可能从探测器模块中直接提取瞳孔相位信息,而无需额外的数字后处理。