Chen Xinzhong, Yao Ziheng, Stanciu Stefan G, Basov D N, Hillenbrand Rainer, Liu Mengkun
Opt Express. 2021 Nov 22;29(24):39648-39668. doi: 10.1364/OE.440821.
The scattering-type scanning near-field optical microscope (s-SNOM) has emerged as a powerful tool for resolving nanoscale inhomogeneities in laterally heterogeneous samples. However, most analytical models used to predict the scattering near-field signals are assuming homogenous landscapes (bulk materials), resulting in inconsistencies when applied to samples with more complex configurations. In this work, we combine the point-dipole model (PDM) to the finite-element method (FEM) to account for the lateral and vertical heterogeneities while keeping the computation time manageable. Full images, spectra, or hyperspectral line profiles can be simulated by calculating the self-consistent dipole radiation demodulated at higher harmonics of the tip oscillation, mimicking real experimental procedures. Using this formalism, we clarify several important yet puzzling experimental observations in near-field images on samples with rich typography and complex material compositions, heterostructures of two-dimensional material flakes, and plasmonic antennas. The developed method serves as a basis for future investigations of nano-systems with nontrivial topography.
散射型扫描近场光学显微镜(s-SNOM)已成为一种用于解析横向非均匀样品中纳米级不均匀性的强大工具。然而,大多数用于预测散射近场信号的分析模型都假设是均匀的表面(块状材料),因此应用于结构更复杂的样品时会产生不一致性。在这项工作中,我们将点偶极子模型(PDM)与有限元方法(FEM)相结合,以考虑横向和纵向的不均匀性,同时使计算时间可控。通过计算在针尖振荡的高次谐波处解调的自洽偶极辐射,模拟完整图像、光谱或高光谱线轮廓,这类似于实际的实验过程。利用这种形式体系,我们阐明了在具有丰富拓扑结构和复杂材料成分的样品、二维材料薄片的异质结构以及等离子体天线的近场图像中几个重要但令人困惑的实验观察结果。所开发的方法为未来对具有复杂形貌的纳米系统的研究奠定了基础。