Wu Xing-Yu, Zhang Yong, Gao Yong-Pan, Wang Chuan
Opt Express. 2021 Nov 22;29(24):40061-40071. doi: 10.1364/OE.442641.
Optomagnonic structures are widely studied in the field of nanophotonics and quantum information science. They are the key platforms for the realization of magnon-mediated microwave to optical transducers in various applications of quantum computing. In order to enhance the coupling between light (photons) and spin waves (magnons), here in this work, we use the Lagrange multiplication method to find the optimum matching condition between the optical whispering-gallery mode and the magnon with Kittle and higher-order modes in microresonators. It is found that the magnon modes located near the edge of the resonator exhibits stronger coupling strength with the optical modes. Numerically, we find the coupling constant can approach 87.6×2 in Kittle mode, and 459×2 in high-order magnon mode for a yttrium iron garnet (YIG, YFeO ) microdisk cavity with a radius of 300 microns and a thickness of 10 microns. We believe these results may provide an efficient way for enhancing the magneto-optical interaction in the optical devices, which will facilitate the development of magneto-optical control, optical-microwave interaction, and optical nonlinearity.
光磁子结构在纳米光子学和量子信息科学领域得到了广泛研究。它们是在量子计算的各种应用中实现磁子介导的微波到光换能器的关键平台。为了增强光(光子)与自旋波(磁子)之间的耦合,在这项工作中,我们使用拉格朗日乘法方法来寻找微谐振器中光学回音壁模式与具有基特尔模式和高阶模式的磁子之间的最佳匹配条件。结果发现,位于谐振器边缘附近的磁子模式与光学模式表现出更强的耦合强度。在数值上,我们发现对于半径为300微米、厚度为10微米的钇铁石榴石(YIG,YFeO)微盘腔,在基特尔模式下耦合常数可接近87.6×2 ,在高阶磁子模式下可接近459×2 。我们相信这些结果可能为增强光学器件中的磁光相互作用提供一种有效方法,这将促进磁光控制、光-微波相互作用和光学非线性的发展。