Weizmann Institute of Science, Herzl St. 234, Rehovot 7610001, Israel.
Institute of Biotechnology, CAS v.v.i., Prumyslova 595, Vestec 252 50 Prague region, Czech Republic.
ACS Synth Biol. 2021 Dec 17;10(12):3445-3460. doi: 10.1021/acssynbio.1c00395. Epub 2021 Nov 22.
Here, we enhanced the popular yeast display method by multiple rounds of DNA and protein engineering. We introduced surface exposure-tailored reporters, eUnaG2 and DnbALFA, creating a new platform of C and N terminal fusion vectors. The optimization of eUnaG2 resulted in five times brighter fluorescence and 10 °C increased thermostability than UnaG. The optimized DnbALFA has 10-fold the level of expression of the starting protein. Following this, different plasmids were developed to create a complex platform allowing a broad range of protein expression organizations and labeling strategies. Our platform showed up to five times better separation between nonexpressing and expressing cells compared with traditional pCTcon2 and c-myc labeling, allowing for fewer rounds of selection and achieving higher binding affinities. Testing 16 different proteins, the enhanced system showed consistently stronger expression signals over c-myc labeling. In addition to gains in simplicity, speed, and cost-effectiveness, new applications were introduced to monitor protein surface exposure and protein retention in the secretion pathway that enabled successful protein engineering of hard-to-express proteins. As an example, we show how we optimized the WD40 domain of the ATG16L1 protein for yeast surface and soluble bacterial expression, starting from a nonexpressing protein. As a second example, we show how using the here-presented enhanced yeast display method we rapidly selected high-affinity binders toward two protein targets, demonstrating the simplicity of generating new protein-protein interactions. While the methodological changes are incremental, it results in a qualitative enhancement in the applicability of yeast display for many applications.
在这里,我们通过多轮 DNA 和蛋白质工程增强了流行的酵母展示方法。我们引入了表面暴露定制的报告蛋白 eUnaG2 和 DnbALFA,创建了 C 和 N 端融合载体的新平台。eUnaG2 的优化使荧光强度提高了五倍,热稳定性提高了 10°C。优化后的 DnbALFA 的表达水平比起始蛋白高 10 倍。在此基础上,开发了不同的质粒来创建一个复杂的平台,允许广泛的蛋白质表达组织和标记策略。与传统的 pCTcon2 和 c-myc 标记相比,我们的平台在非表达细胞和表达细胞之间的分离效果要好五倍,从而可以减少选择轮数,并实现更高的结合亲和力。对 16 种不同的蛋白质进行测试,增强后的系统显示出比 c-myc 标记更强的表达信号。除了在简单性、速度和成本效益方面的提高外,还引入了新的应用来监测蛋白质表面暴露和蛋白质在分泌途径中的保留情况,从而成功地对难以表达的蛋白质进行了蛋白质工程改造。例如,我们展示了如何从非表达蛋白开始,优化 ATG16L1 蛋白的 WD40 结构域在酵母表面和可溶性细菌中的表达。作为第二个例子,我们展示了如何使用这里提出的增强型酵母展示方法,快速选择两个蛋白质靶标的高亲和力结合物,证明了生成新蛋白质-蛋白质相互作用的简单性。虽然方法上的变化是渐进的,但它使酵母展示在许多应用中的适用性得到了质的提高。