Molecular Retrovirology Unit, Institut Pasteurgrid.428999.7, Paris, France.
Sorbonne Université, Complexité du Vivant, Paris, France.
mBio. 2021 Dec 21;12(6):e0255721. doi: 10.1128/mBio.02557-21. Epub 2021 Nov 23.
Viruses have evolved a plethora of mechanisms to impair host innate immune responses. Herpes simplex virus type 1 (HSV-1), a double-stranded linear DNA virus, impairs the mitochondrial network and dynamics predominantly through the gene. We demonstrated that HSV-1 infection induced a remodeling of mitochondrial shape, resulting in a fragmentation of the mitochondria associated with a decrease in their volume and an increase in their sphericity. This damage leads to the release of mitochondrial DNA (mtDNA) to the cytosol. By generating a stable THP-1 cell line expressing the DNase I-mCherry fusion protein and a THP-1 cell line specifically depleted of mtDNA upon ethidium bromide treatment, we showed that cytosolic mtDNA contributes to type I interferon and APOBEC3A upregulation. This was confirmed by using an HSV-1 strain (KOS37 UL98-SPA) with a deletion of the gene that impaired its ability to induce mtDNA stress. Furthermore, by using an inhibitor of RNA polymerase III, we demonstrated that upon HSV-1 infection, cytosolic mtDNA enhanced type I interferon induction through the RNA polymerase III/RIG-I pathway. APOBEC3A was in turn induced by interferon. Deep sequencing analyses of cytosolic mtDNA mutations revealed an APOBEC3A signature predominantly in the 5'TpCpG context. These data demonstrate that upon HSV-1 infection, the mitochondrial network is disrupted, leading to the release of mtDNA and ultimately to its catabolism through APOBEC3-induced mutations. Herpes simplex virus 1 (HSV-1) impairs the mitochondrial network through the viral protein UL12.5. This leads to the fusion of mitochondria and simultaneous release of mitochondrial DNA (mtDNA) in a mouse model. We have shown that released mtDNA is recognized as a danger signal, capable of stimulating signaling pathways and inducing the production of proinflammatory cytokines. The expression of the human cytidine deaminase APOBEC3A is highly upregulated by interferon responses. This enzyme catalyzes the deamination of cytidine to uridine in single-stranded DNA substrates, resulting in the catabolism of edited DNA. Using human cell lines deprived of mtDNA and viral strains deficient in , we demonstrated the implication of mtDNA in the production of interferon and APOBEC3A expression during viral infection. We have shown that HSV-1 induces mitochondrial network fragmentation in a human model and confirmed the implication of RNA polymerase III/RIG-I signaling in the capture of cytosolic mtDNA.
病毒已经进化出大量的机制来削弱宿主先天免疫反应。单纯疱疹病毒 1 型(HSV-1)是一种双链线性 DNA 病毒,主要通过 基因破坏线粒体网络和动力学。我们证明,HSV-1 感染诱导线粒体形状重塑,导致线粒体碎片化,伴随其体积减小和球形度增加。这种损伤导致线粒体 DNA(mtDNA)释放到细胞质中。通过生成稳定表达 DNase I-mCherry 融合蛋白的 THP-1 细胞系和在用溴化乙锭处理后特异性耗尽 mtDNA 的 THP-1 细胞系,我们表明细胞质 mtDNA 有助于 I 型干扰素和 APOBEC3A 的上调。这通过使用缺失 基因的 HSV-1 株(KOS37 UL98-SPA)得到证实,该基因缺失削弱了其诱导 mtDNA 应激的能力。此外,通过使用 RNA 聚合酶 III 抑制剂,我们证明在 HSV-1 感染后,细胞质 mtDNA 通过 RNA 聚合酶 III/RIG-I 途径增强 I 型干扰素的诱导。APOBEC3A 反过来又被干扰素诱导。对细胞质 mtDNA 突变的深度测序分析揭示了 APOBEC3A 主要在 5'TpCpG 背景下的特征。这些数据表明,在 HSV-1 感染后,线粒体网络被破坏,导致 mtDNA 的释放,并最终通过 APOBEC3 诱导的突变导致其分解代谢。单纯疱疹病毒 1(HSV-1)通过病毒蛋白 UL12.5 破坏线粒体网络。这导致在小鼠模型中线粒体融合和同时释放线粒体 DNA(mtDNA)。我们已经表明,释放的 mtDNA 被识别为一种危险信号,能够刺激信号通路并诱导促炎细胞因子的产生。人类胞嘧啶脱氨酶 APOBEC3A 的表达被干扰素反应高度上调。该酶催化单链 DNA 底物中胞嘧啶向尿嘧啶的脱氨,导致编辑 DNA 的分解代谢。使用缺乏 mtDNA 的人细胞系和缺乏 基因的病毒株,我们证明了 mtDNA 在病毒感染期间干扰素和 APOBEC3A 表达中的作用。我们已经表明,HSV-1 在人类模型中诱导线粒体网络碎片化,并证实了 RNA 聚合酶 III/RIG-I 信号在细胞质 mtDNA 捕获中的作用。