Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France.
Sorbonne Université, Complexité du Vivant, ED515, Paris, France.
PLoS Pathog. 2023 Feb 21;19(2):e1011170. doi: 10.1371/journal.ppat.1011170. eCollection 2023 Feb.
Viruses have evolved countless mechanisms to subvert and impair the host innate immune response. Measles virus (MeV), an enveloped, non-segmented, negative-strand RNA virus, alters the interferon response through different mechanisms, yet no viral protein has been described as directly targeting mitochondria. Among the crucial mitochondrial enzymes, 5'-aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. In this work, we demonstrate that MeV impairs the mitochondrial network through the V protein, which antagonizes the mitochondrial enzyme ALAS1 and sequesters it to the cytosol. This re-localization of ALAS1 leads to a decrease in mitochondrial volume and impairment of its metabolic potential, a phenomenon not observed in MeV deficient for the V gene. This perturbation of the mitochondrial dynamics demonstrated both in culture and in infected IFNAR-/- hCD46 transgenic mice, causes the release of mitochondrial double-stranded DNA (mtDNA) in the cytosol. By performing subcellular fractionation post infection, we demonstrate that the most significant source of DNA in the cytosol is of mitochondrial origin. Released mtDNA is then recognized and transcribed by the DNA-dependent RNA polymerase III. The resulting double-stranded RNA intermediates will be captured by RIG-I, ultimately initiating type I interferon production. Deep sequencing analysis of cytosolic mtDNA editing divulged an APOBEC3A signature, primarily analyzed in the 5'TpCpG context. Finally, in a negative feedback loop, APOBEC3A an interferon inducible enzyme will orchestrate the catabolism of mitochondrial DNA, decrease cellular inflammation, and dampen the innate immune response.
病毒进化出无数机制来颠覆和削弱宿主先天免疫反应。麻疹病毒(Measles virus,MeV)是一种包膜、非分段、负链 RNA 病毒,通过不同的机制改变干扰素反应,但尚未描述任何病毒蛋白可直接靶向线粒体。在关键的线粒体酶中,5'-氨基酮戊酸合酶(5'-aminolevulinate synthase,ALAS)是一种酶,可催化血红素生物合成的第一步,将甘氨酸和琥珀酰辅酶 A 转化为 5'-氨基酮戊酸。在这项工作中,我们证明 MeV 通过 V 蛋白损害线粒体网络,该蛋白拮抗线粒体酶 ALAS1 并将其隔离到细胞质中。ALAS1 的这种重新定位导致线粒体体积减少和代谢潜力受损,而在缺乏 V 基因的 MeV 中未观察到这种现象。这种在培养物和感染 IFNAR-/-hCD46 转基因小鼠中观察到的线粒体动力学的扰动导致线粒体双链 DNA(mtDNA)在细胞质中的释放。通过感染后进行亚细胞分级分离,我们证明细胞质中 DNA 的最重要来源是线粒体。释放的 mtDNA 随后被 DNA 依赖性 RNA 聚合酶 III 识别和转录。由此产生的双链 RNA 中间体将被 RIG-I 捕获,最终引发 I 型干扰素的产生。对细胞质 mtDNA 编辑的深度测序分析揭示了 APOBEC3A 特征,主要在 5'TpCpG 背景下进行分析。最后,在负反馈回路中,干扰素诱导酶 APOBEC3A 将协调线粒体 DNA 的分解代谢,减少细胞炎症,并抑制先天免疫反应。