National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China.
School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China.
J Phys Chem A. 2021 Dec 9;125(48):10451-10462. doi: 10.1021/acs.jpca.1c07623. Epub 2021 Nov 23.
2-Methyl-3-buten-2-ol (MBO232) is a potential biofuel and renewable fuel additive. In a combustion environment, the consumption of MBO232 is mainly through the reaction with a OH radical, one of the most important oxidants. Here, we predict the intricate reactions of MBO232 and OH radicals under a broad range of combustion conditions, that is, 230-2500 K and 0.01-1000 atm. The potential energy surfaces of H-abstraction and OH-addition have been investigated at the CCSD(T)/CBS//M06-2X/def2-TZVP level, and the rate constants were calculated via Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) theory. The decomposition reactions of the critical intermediates from the OH-addition reactions have also been studied. Our results show that OH-addition reactions are dominant below 850 K, while H-abstraction reactions, especially the channel-abstracting H atoms from the methyl groups, are more competitive at higher temperatures. We found that it is necessary to discriminate H atoms attached to the same C atom, as their abstraction rates can differ by up to 1 order of magnitude. The calculated results show good agreement with the reported experimental data. We have provided the modified Arrhenius expressions for rate constants of the dominant channels. The kinetic data determined in this work are of much value for constructing the combustion models of MBO232 and understanding the combustion kinetics and mechanism of other unsaturated alcohols.
2-甲基-3-丁烯-2-醇(MBO232)是一种有潜力的生物燃料和可再生燃料添加剂。在燃烧环境中,MBO232 的消耗主要是通过与 OH 自由基反应来实现的,OH 自由基是最重要的氧化剂之一。在这里,我们预测了 MBO232 和 OH 自由基在广泛的燃烧条件下的复杂反应,即在 230-2500 K 和 0.01-1000 atm 下。我们在 CCSD(T)/CBS//M06-2X/def2-TZVP 水平上研究了 H 提取和 OH 加成的势能面,并通过 Rice-Ramsperger-Kassel-Marcus/master 方程(RRKM/ME)理论计算了速率常数。还研究了 OH 加成反应中关键中间体的分解反应。我们的结果表明,OH 加成反应在低于 850 K 时占主导地位,而 H 提取反应,特别是从甲基提取 H 原子的通道,在较高温度下更具竞争力。我们发现有必要区分连接在同一 C 原子上的 H 原子,因为它们的提取速率可以相差一个数量级。计算结果与报道的实验数据吻合较好。我们还为主要通道的速率常数提供了修正的 Arrhenius 表达式。本工作中确定的动力学数据对于构建 MBO232 的燃烧模型以及理解其他不饱和醇的燃烧动力学和机理具有重要价值。