Xu Guangxian, Wang Hong, Zhang Jinyang, Gao Jiao, Guan Jiwen, Xu Qiang, Truhlar Donald G, Wang Zhandong
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, PR China.
School of Pharmacy, Anhui Medical College, Hefei, Anhui, PR China.
Nat Commun. 2024 Dec 30;15(1):10755. doi: 10.1038/s41467-024-53889-9.
Elucidating the formation mechanism of polycyclic aromatic hydrocarbons (PAHs) is crucial to understand processes in the contexts of combustion, environmental science, astrochemistry, and nanomaterials synthesis. An excited electronic-state pathway has been proposed to account for the formation of 14π aromatic anthracene in the benzyl (b-CH) self-reaction. Here, to improve our understanding of anthracene formation, we investigate CH bimolecular reactions in a tubular SiC microreactor through an isomer-resolved method that combines in situ synchrotron-radiation VUV photoionization mass spectrometry and ex-situ gas chromatography-mass spectrometry. We observe the formation of o-tolyl (o-CH) radical isomer, and identify several CH products (diphenylacetylene, phenanthrene and anthracene) and key CH and CH intermediates. These isomer-specific results support the occurrence of reactions on the electronic ground-state potential energy surface, with no evidence for key intermediates of the proposed excited-state pathway as the key pathway. Furthermore, theoretical calculations unveil new facile reaction pathways that may contribute to the enhanced production of anthracene, and these mechanistic findings are further substantiated by pyrolysis experiments. The results add insight into the molecular formation of PAHs in CH bimolecular reaction, and contribute to establishing accurate models to predict PAH chemistry in diverse laboratory, environmental, and extraterrestrial contexts.
阐明多环芳烃(PAHs)的形成机制对于理解燃烧、环境科学、天体化学和纳米材料合成等领域的过程至关重要。有人提出了一种激发电子态途径来解释苄基(b-CH)自反应中14π芳香族蒽的形成。在此,为了加深我们对蒽形成的理解,我们通过一种结合原位同步辐射真空紫外光电离质谱和非原位气相色谱-质谱的异构体分辨方法,在管式SiC微反应器中研究了CH双分子反应。我们观察到邻甲苯基(o-CH)自由基异构体的形成,并鉴定了几种CH产物(二苯乙炔、菲和蒽)以及关键的CH和CH中间体。这些异构体特异性结果支持了在电子基态势能面上发生反应,没有证据表明所提出的激发态途径的关键中间体是关键途径。此外,理论计算揭示了可能有助于提高蒽产量的新的简便反应途径,这些机理发现通过热解实验得到了进一步证实。这些结果为深入了解CH双分子反应中PAHs的分子形成提供了见解,并有助于建立准确的模型来预测不同实验室、环境和地球外环境中的PAH化学。