Yan Wenzhong, Mehta Ankur
Department of Mechanical and Aerospace Engineering and University of California, Los Angeles, California, USA.
Department of Electrical and Computer Engineering, University of California, Los Angeles, California, USA.
Soft Robot. 2022 Oct;9(5):871-881. doi: 10.1089/soro.2021.0018. Epub 2021 Nov 23.
Origami-inspired robots are of particular interest due to their potential for rapid and accessible design and fabrication of elegant designs and complex functionalities through cutting and folding of flexible two-dimensional sheets or even strings, that is, printable manufacturing. Yet, origami robots still require bulky rigid components or electronics for actuation and control to accomplish tasks with reliability, programmability, ability to output substantial force, and durability, restricting their full potential. In this study, we present a printable self-sustained compliant oscillator that generates periodic actuation using only constant electrical power, without discrete components or electronic control hardware. This oscillator is robust (9 out of 10 prototypes worked successfully on the first try), configurable (with tunable periods from 3 to 12 s), powerful (can overcome hydrodynamic resistance to consistently propel a swimmer at ∼1.6 body lengths/min or 3.66 mm/s), and long lasting (∼10 cycles); it enables driving macroscale devices with prescribed autonomous behaviors, for example, locomotion and sequencing. This oscillator is also fully functional underwater and in high magnetic fields. Our analytical model characterizes essential parameters of the oscillation period, enabling programmable design of the oscillator. The printable oscillator can be integrated into origami-inspired systems seamlessly and monolithically, allowing rapid design and prototyping; the resulting integrated devices are lightweight, low cost, compliant, electronic free, and nonmagnetic, enabling practical applications in extreme areas. We demonstrate the functionalities of the oscillator with: (1) autonomous gliding of a printable swimmer, (2) LED flashing, and (3) fluid stirring. This work paves the way for realizing fully printable autonomous robots with high integration of actuation and control.
受折纸启发的机器人备受关注,因为它们有潜力通过对柔性二维薄片甚至线绳进行切割和折叠,即通过可打印制造,快速且便捷地设计和制造出精巧的设计和复杂的功能。然而,折纸机器人仍需要笨重的刚性部件或电子设备来进行驱动和控制,以可靠地完成任务,具备可编程性、输出较大力的能力以及耐用性,这限制了它们的全部潜力。在本研究中,我们展示了一种可打印的自持式柔顺振荡器,它仅使用恒定电力就能产生周期性驱动,无需分立元件或电子控制硬件。这种振荡器坚固耐用(十分之九个原型首次尝试就成功运行)、可配置(周期可调,范围为3至12秒)、动力强大(能克服流体动力阻力,以约1.6体长/分钟或3.66毫米/秒的速度持续推动游泳器)且持久耐用(约10个周期);它能够驱动具有规定自主行为的宏观设备,例如运动和序列操作。这种振荡器在水下和强磁场环境中也能完全正常工作。我们的分析模型表征了振荡周期的关键参数,实现了振荡器的可编程设计。这种可打印振荡器可以无缝且整体地集成到受折纸启发的系统中,实现快速设计和原型制作;由此产生的集成设备重量轻、成本低、柔顺、无电子元件且无磁性,能够在极端环境中实现实际应用。我们通过以下方式展示了该振荡器的功能:(1)可打印游泳器的自主滑行,(2)发光二极管闪烁,以及(3)流体搅拌。这项工作为实现具有高度集成驱动和控制功能的完全可打印自主机器人铺平了道路。