Suppr超能文献

通过元学习实现视频帧插值的测试时自适应

Test-Time Adaptation for Video Frame Interpolation via Meta-Learning.

作者信息

Choi Myungsub, Choi Janghoon, Baik Sungyong, Kim Tae Hyun, Lee Kyoung Mu

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9615-9628. doi: 10.1109/TPAMI.2021.3129819. Epub 2022 Nov 7.

Abstract

Video frame interpolation is a challenging problem that involves various scenarios depending on the variety of foreground and background motions, frame rate, and occlusion. Therefore, generalizing across different scenes is difficult for a single network with fixed parameters. Ideally, one could have a different network for each scenario, but this will be computationally infeasible for practical applications. In this work, we propose MetaVFI, an adaptive video frame interpolation algorithm that uses additional information readily available at test time but has not been exploited in previous works. We initially show the benefits of test-time adaptation through simple fine-tuning of a network and then greatly improve its efficiency by incorporating meta-learning. Thus, we obtain significant performance gains with only a single gradient update without introducing any additional parameters. Moreover, the proposed MetaVFI algorithm is model-agnostic which can be easily combined with any video frame interpolation network. We show that our adaptive framework greatly improves the performance of baseline video frame interpolation networks on multiple benchmark datasets.

摘要

视频帧插值是一个具有挑战性的问题,它涉及到各种场景,具体取决于前景和背景运动的多样性、帧率以及遮挡情况。因此,对于具有固定参数的单个网络而言,要在不同场景中实现泛化是困难的。理想情况下,针对每个场景都可以有一个不同的网络,但这在实际应用中计算上是不可行的。在这项工作中,我们提出了MetaVFI,一种自适应视频帧插值算法,该算法使用测试时易于获得但在先前工作中未被利用的附加信息。我们首先通过对网络进行简单微调展示了测试时自适应的好处,然后通过纳入元学习大大提高了其效率。因此,我们仅通过一次梯度更新就获得了显著的性能提升,而无需引入任何额外参数。此外,所提出的MetaVFI算法与模型无关,可以很容易地与任何视频帧插值网络相结合。我们表明,我们的自适应框架在多个基准数据集上大大提高了基线视频帧插值网络的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验