State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, Jiangsu 210093, China.
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
Sci Total Environ. 2022 Apr 20;818:151820. doi: 10.1016/j.scitotenv.2021.151820. Epub 2021 Nov 20.
Microbial electrosynthesis (MES) is a novel CO utilization technology. Biocatalysts in this process may use electrons obtained from a photovoltaic system to reduce CO to chemicals and realize energy conversion from solar energy to chemical energy. The photoelectric material CuO/g-CN was directly introduced into the MES system using mixed culture as biocatalyst in this study. CuO/g-CN can effectively absorb light and presents satisfactory electron and hole separation ability. Photogenerated electrons from CuO/g-CN enhanced the electron transfer rate and reduced cathodic charge transfer resistance. CuO/g-CN mainly improved the electron supply of electroautotrophic microorganisms through direct electron transfer rather than indirect electron transfer via hydrogen. Photogenerated holes can combine electrons from anode and provide extra driving force to improve the MES performance. Furthermore, the CuO/g-CN photocathode also improved the biocatalytic activity by increasing the total amount of biocatalyst and regulating cathodic microbial community composition. Acetate production rate in MES with the CuO/g-CN photocathode was 2.6 times higher than that of the control group. This study provides a new strategy for semiconductor photocathodes to improve the MES performance with mixed culture.
微生物电解合成(MES)是一种新型的 CO 利用技术。该过程中的生物催化剂可以利用从光伏系统获得的电子将 CO 还原为化学物质,并实现从太阳能到化学能的能量转换。本研究将混合培养物用作生物催化剂,直接将光电材料 CuO/g-CN 引入 MES 系统。CuO/g-CN 能有效吸收光,并具有令人满意的电子和空穴分离能力。来自 CuO/g-CN 的光生电子增强了电子转移速率并降低了阴极电荷转移电阻。CuO/g-CN 主要通过直接电子转移而不是通过氢的间接电子转移来改善电自养微生物的电子供应。光生空穴可以与阳极的电子结合,并提供额外的驱动力来提高 MES 的性能。此外,CuO/g-CN 光阴极还通过增加生物催化剂的总量和调节阴极微生物群落组成来提高生物催化活性。带有 CuO/g-CN 光阴极的 MES 中的乙酸盐产率比对照组高 2.6 倍。本研究为半导体光阴极提供了一种新策略,以提高混合培养物的 MES 性能。