Tian Shihao, Wang Haoqi, Dong Zhiwei, Yang Yang, Yuan Hao, Huang Qiong, Song Tian-Shun, Xie Jingjing
1State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 People's Republic of China.
2College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People's Republic of China.
Biotechnol Biofuels. 2019 Apr 1;12:71. doi: 10.1186/s13068-019-1413-z. eCollection 2019.
Microbial electrosynthesis (MES) is a biocathode-driven process, in which electroautotrophic microorganisms can directly uptake electrons or indirectly via H from the cathode as energy sources and CO as only carbon source to produce chemicals.
This study demonstrates that a hydrogen evolution reaction (HER) catalyst can enhance MES performance. An active HER electrocatalyst molybdenum carbide (MoC)-modified electrode was constructed for MES. The volumetric acetate production rate of MES with 12 mg cm MoC was 0.19 ± 0.02 g L day, which was 2.1 times higher than that of the control. The final acetate concentration reached 5.72 ± 0.6 g L within 30 days, and coulombic efficiencies of 64 ± 0.7% were yielded. Furthermore, electrochemical study, scanning electron microscopy, and microbial community analyses suggested that MoC can accelerate the release of hydrogen, promote the formation of biofilms and regulate the mixed microbial flora.
Coupling a HER catalyst to a cathode of MES system is a promising strategy for improving MES efficiency.
微生物电合成(MES)是一个由生物阴极驱动的过程,其中电自养微生物可以直接从阴极摄取电子,或通过阴极产生的氢气间接摄取电子,以二氧化碳作为唯一碳源,将其作为能源来生产化学品。
本研究表明,析氢反应(HER)催化剂可以提高MES性能。构建了一种用于MES的活性HER电催化剂碳化钼(MoC)修饰电极。含12mg/cm²MoC的MES的乙酸盐体积产率为0.19±0.02g/L·天,比对照高2.1倍。30天内最终乙酸盐浓度达到5.72±0.6g/L,库仑效率为64±0.7%。此外,电化学研究、扫描电子显微镜和微生物群落分析表明,MoC可以加速氢气释放,促进生物膜形成并调节混合微生物菌群。
将HER催化剂与MES系统的阴极耦合是提高MES效率的一种有前景的策略。