Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China.
Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China.
Connect Tissue Res. 2022 Sep;63(5):453-462. doi: 10.1080/03008207.2021.2007902. Epub 2021 Nov 23.
The stiffness of the pericellular matrix (PCM) decreases in the most common degenerative joint disease, osteoarthritis (OA). This study was undertaken to explore the potential functional role of transient receptor potential vanilloid 4 (TRPV4), Piezo1, and Piezo2 in transducing different PCM stiffness in chondrocytes.
Polydimethylsiloxane (PDMS) substrates with different stiffness (designated 197 kPa, 78 kPa, 54 kPa, or 2 kPa, respectively) were first prepared to simulate the decrease in stiffness of the PCM that chondrocytes encounter in osteoarthritic cartilage. Next, the TRPV4-, Piezo1-, or Piezo2-knockdown primary chondrocytes (designated TRPV4-KD, Piezo1-KD, or Piezo2-KD cells) were seeded onto these different PDMS substrates. Then, using a Ca-imaging system, substrate stiffness-regulated intracellular Ca influx ([Ca]) in chondrocytes was examined to investigate the role of TRPV4, Piezo1, and Piezo2 in Ca signaling in response to different stiffness. Results showed that the characteristics of intracellular [Ca] in chondrocytes regulated by PDMS substrate exhibited stiffness-dependent differences. Additionally, stiffness-evoked [Ca] changes were suppressed in TRPV4-KD, Piezo1-KD, or Piezo2-KD cells compared with control siRNA-treated cells, implying that any channel is fundamental for Ca signaling induced by substrate stiffness. Furthermore, TRPV4-mediated Ca signaling played a central role in the response of chondrocytes to 197 kPa and 78 kPa substrate, while Piezo1/2-mediated Ca signaling played a central role in the response of chondrocytes to 54 kPa and 2 kPa substrate.
Collectively, these findings indicate that chondrocytes might perceive and distinguish the different PCM stiffness by using different mechanosensitive ion channels.
细胞周基质(PCM)的硬度在最常见的退行性关节疾病骨关节炎(OA)中降低。本研究旨在探索瞬时受体电位香草醛 4(TRPV4)、Piezo1 和 Piezo2 在传导软骨细胞不同 PCM 硬度中的潜在功能作用。
首先制备具有不同硬度的聚二甲基硅氧烷(PDMS)基底(分别指定为 197kPa、78kPa、54kPa 或 2kPa),以模拟软骨细胞在骨关节炎软骨中遇到的 PCM 硬度降低。接下来,将 TRPV4、Piezo1 或 Piezo2 敲低的原代软骨细胞(分别命名为 TRPV4-KD、Piezo1-KD 或 Piezo2-KD 细胞)接种到这些不同的 PDMS 基底上。然后,使用钙成像系统,检测基底硬度调节软骨细胞内 Ca 内流([Ca]),以研究 TRPV4、Piezo1 和 Piezo2 在 Ca 信号对不同硬度的反应中的作用。结果表明,PDMS 基底调节的软骨细胞内[Ca]的特征表现出依赖于硬度的差异。此外,与对照 siRNA 处理的细胞相比,TRPV4-KD、Piezo1-KD 或 Piezo2-KD 细胞中,由基质硬度引发的[Ca]变化受到抑制,这表明任何通道对于基质硬度诱导的 Ca 信号都是基本的。此外,TRPV4 介导的 Ca 信号在软骨细胞对 197kPa 和 78kPa 基质的反应中起核心作用,而 Piezo1/2 介导的 Ca 信号在软骨细胞对 54kPa 和 2kPa 基质的反应中起核心作用。
总之,这些发现表明软骨细胞可能通过使用不同的机械敏感离子通道来感知和区分不同的 PCM 硬度。