Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
Louvain Drug Research Institute, Clinical Pharmacy Research Group (CLIP) and Institute of Health and Society (IRSS), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
ESC Heart Fail. 2022 Feb;9(1):39-47. doi: 10.1002/ehf2.13724. Epub 2021 Nov 23.
The diagnosis of heart failure (HF) is an important problem in primary care. We previously demonstrated a 74% increase in registered HF diagnoses in primary care electronic health records (EHRs) following an extended audit procedure. What remains unclear is the accuracy of registered HF pre-audit and which EHR variables are most important in the extended audit strategy. This study aims to describe the diagnostic HF classification sequence at different stages, assess general practitioner (GP) HF misclassification, and test the predictive performance of an optimized audit.
This is a secondary analysis of the OSCAR-HF study, a prospective observational trial including 51 participating GPs. OSCAR used an extended audit based on typical HF risk factors, signs, symptoms, and medications in GPs' EHR. This resulted in a list of possible HF patients, which participating GPs had to classify as HF or non-HF. We compared registered HF diagnoses before and after GPs' assessment. For our analysis of audit performance, we used GPs' assessment of HF as primary outcome and audit queries as dichotomous predictor variables for a gradient boosted machine (GBM) decision tree algorithm and logistic regression model. Of the 18 011 patients eligible for the audit intervention, 4678 (26.0%) were identified as possible HF patients and submitted for GPs' assessment in the audit stage. There were 310 patients with registered HF before GP assessment, of whom 146 (47.1%) were judged not to have HF by their GP (over-registration). There were 538 patients with registered HF after GP assessment, of whom 374 (69.5%) did not have registered HF before GP assessment (under-registration). The GBM and logistic regression model had a comparable predictive performance (area under the curve of 0.70 [95% confidence interval 0.65-0.77] and 0.69 [95% confidence interval 0.64-0.75], respectively). This was not significantly impacted by reducing the set of predictor variables to the 10 most important variables identified in the GBM model (free-text and coded cardiomyopathy, ischaemic heart disease and atrial fibrillation, digoxin, mineralocorticoid receptor antagonists, and combinations of renin-angiotensin system inhibitors and beta-blockers with diuretics). This optimized query set was enough to identify 86% (n = 461/538) of GPs' self-assessed HF population with a 33% reduction (n = 1537/4678) in screening caseload.
Diagnostic coding of HF in primary care health records is inaccurate with a high degree of under-registration and over-registration. An optimized query set enabled identification of more than 80% of GPs' self-assessed HF population.
心力衰竭(HF)的诊断是初级保健中的一个重要问题。我们之前的研究表明,在进行了扩展审计程序后,初级保健电子健康记录(EHR)中注册的 HF 诊断增加了 74%。目前尚不清楚注册 HF 预审计的准确性,以及在扩展审计策略中哪些 EHR 变量最重要。本研究旨在描述不同阶段的 HF 诊断分类顺序,评估全科医生(GP)HF 的误诊,并测试优化审计的预测性能。
这是 OSCAR-HF 研究的二次分析,该前瞻性观察性试验包括 51 名参与的全科医生。OSCAR 使用了基于 GP 的 EHR 中典型 HF 风险因素、体征、症状和药物的扩展审计。这产生了一份可能的 HF 患者名单,参与的全科医生必须将其归类为 HF 或非 HF。我们比较了 GP 评估前后的注册 HF 诊断。对于我们的审计性能分析,我们将 GP 对 HF 的评估作为主要结局,并将审计查询作为梯度提升机(GBM)决策树算法和逻辑回归模型的二分类预测变量。在符合审计干预条件的 18011 名患者中,有 4678 名(26.0%)被确定为可能的 HF 患者,并在审计阶段提交给 GP 进行评估。在 GP 评估之前,有 310 名患者有注册 HF,其中 146 名(47.1%)被 GP 判断没有 HF(过度注册)。在 GP 评估后,有 538 名患者有注册 HF,其中 374 名(69.5%)在 GP 评估前没有注册 HF(漏报)。GBM 和逻辑回归模型的预测性能相当(曲线下面积分别为 0.70 [95%置信区间 0.65-0.77]和 0.69 [95%置信区间 0.64-0.75])。这并没有因将预测变量集减少到 GBM 模型中确定的 10 个最重要变量(自由文本和编码心肌病、缺血性心脏病和心房颤动、地高辛、盐皮质激素受体拮抗剂以及肾素-血管紧张素系统抑制剂与利尿剂的组合)而受到显著影响。这个优化查询集足以识别 86%(n=461/538)的 GP 自我评估 HF 人群,筛查病例数减少了 33%(n=1537/4678)。
初级保健健康记录中 HF 的诊断编码不准确,存在高度的漏报和过度报告。一个优化的查询集可以识别超过 80%的 GP 自我评估 HF 人群。