Suppr超能文献

基于纳米槽结构光流体微激光器的可调谐光学涡旋

Tunable Optical Vortex from a Nanogroove-Structured Optofluidic Microlaser.

作者信息

Qiao Zhen, Gong Chaoyang, Liao Yikai, Wang Chenlu, Chan Kok Ken, Zhu Song, Kim Munho, Chen Yu-Cheng

机构信息

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

出版信息

Nano Lett. 2022 Feb 9;22(3):1425-1432. doi: 10.1021/acs.nanolett.1c04065. Epub 2021 Nov 24.

Abstract

Optical vortices with tunable properties in multiple dimensions are highly desirable in modern photonics, particularly for broadly tunable wavelengths and topological charges at the micrometer scale. Compared to solid-state approaches, here we demonstrate tunable optical vortices through the fusion of optofluidics and vortex beams in which the handedness, topological charges, and lasing wavelengths could be fully adjusted and dynamically controlled. Nanogroove structures inscribed in Fabry-Pérot optofluidic microcavities were proposed to generate optical vortices by converting Hermite-Gaussian laser modes. Topological charges could be controlled by tuning the lengths of the nanogroove structures. Vortex laser beams spanning a wide spectral band (430-630 nm) were achieved by alternating different liquid gain materials. Finally, dynamic switching of vortex laser wavelengths in real-time was realized through an optofluidic vortex microlaser device. The findings provide a robust yet flexible approach for generating on-chip vortex sources with multiple dimensions, high tunability, and reconfigurability.

摘要

在现代光子学中,尤其是在微米尺度上实现波长和拓扑电荷的广泛可调谐,具有多维可调谐特性的光学涡旋是非常理想的。与固态方法相比,我们在此展示了通过光流体学和涡旋光束的融合实现可调谐光学涡旋,其中旋向性、拓扑电荷和激光波长可以完全调节并动态控制。提出在法布里 - 珀罗光流体微腔中刻写纳米槽结构,通过转换厄米 - 高斯激光模式来产生光学涡旋。拓扑电荷可以通过调整纳米槽结构的长度来控制。通过交替使用不同的液体增益材料,实现了跨越宽光谱带(430 - 630纳米)的涡旋激光束。最后,通过光流体涡旋微激光器件实现了涡旋激光波长的实时动态切换。这些发现为在芯片上生成具有多维、高可调谐性和可重构性的涡旋源提供了一种强大而灵活的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验