Departamento de Farmacia, Facultad de Quí-mica, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Del. Coyoacán, Mexico City, 04510, Mexico.
Unidad de Ingenierí-a de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389 Mexico City, Mexico.
Cell Mol Biol (Noisy-le-grand). 2021 Jan 31;67(1):64-72. doi: 10.14715/cmb/2021.67.1.10.
The purpose of our study was to obtain new wound dressings in the form of hydrogels that promote wound healing taking advantage of the broad activities of elastin (ELT) in physiological processes. The hydrogel of ELT and polyvinylpyrrolidone (PVP; ELT-PVP) was obtained by cross-linking induced by gamma irradiation at a dose of 25 kGy. The physicochemical changes attributed to cross-linking were analyzed through scanning electron microscopy (SEM), infrared spectroscopy analysis with Fourier transform (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Furthermore, we performed a rheological study to determine the possible changes in the fluidic macroscopic properties produced by the cross-linking method. Finally, we accomplished viability and proliferation analyses of human dermal fibroblasts in the presence of the hydrogel to evaluate its biological characteristics. The hydrogel exhibited a porous morphology, showing interconnected porous with an average pore size of 16 ± 8.42 µm. The analysis of FTIR, DSC, and TGA revealed changes in the chemical structure of the ELT-PVP hydrogel after the irradiation process. Also, the hydrogel exhibited a rheological behavior of a pseudoplastic and thixotropic fluid. The hydrogel was biocompatible, demonstrating high cell viability, whereas ELT presented low biocompatibility at high concentrations. In summary, the hydrogel obtained by gamma irradiation revealed the appropriate morphology to be applied as a wound dressing. Interestingly, the hydrogel exhibited a higher percentage of cell viability compared with ELT, suggesting that the cross-linking of ELT with PVP is a suitable strategy for biological applications of ELT without generating cellular damage.
我们研究的目的是获得水凝胶形式的新型伤口敷料,这些敷料利用弹性蛋白(ELT)在生理过程中的广泛活性来促进伤口愈合。ELT 和聚乙烯吡咯烷酮(PVP;ELT-PVP)的水凝胶是通过在 25 kGy 的剂量下辐照诱导交联获得的。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱分析(FTIR)、差示扫描量热法(DSC)和热重分析(TGA)分析了归因于交联的物理化学变化。此外,我们进行了流变学研究,以确定交联方法可能导致的流变体宏观性质的变化。最后,我们在水凝胶存在的情况下完成了人真皮成纤维细胞的活力和增殖分析,以评估其生物学特性。水凝胶呈现多孔形态,显示出具有平均孔径为 16 ± 8.42 µm 的互连多孔结构。FTIR、DSC 和 TGA 的分析表明,ELT-PVP 水凝胶在辐照过程后化学结构发生了变化。此外,水凝胶表现出假塑性和触变性流体的流变行为。水凝胶具有生物相容性,表现出高细胞活力,而 ELT 在高浓度时表现出低生物相容性。总之,通过伽马辐照获得的水凝胶具有适合用作伤口敷料的适当形态。有趣的是,与 ELT 相比,水凝胶表现出更高的细胞活力百分比,这表明 ELT 与 PVP 的交联是一种在不产生细胞损伤的情况下将 ELT 用于生物应用的合适策略。