Suppr超能文献

利用多风格特征聚合进行艺术藏品的大规模交互式检索。

Large-scale interactive retrieval in art collections using multi-style feature aggregation.

机构信息

Heidelberg Collaboratory for Image Processing, Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.

出版信息

PLoS One. 2021 Nov 24;16(11):e0259718. doi: 10.1371/journal.pone.0259718. eCollection 2021.

Abstract

Finding objects and motifs across artworks is of great importance for art history as it helps to understand individual works and analyze relations between them. The advent of digitization has produced extensive digital art collections with many research opportunities. However, manual approaches are inadequate to handle this amount of data, and it requires appropriate computer-based methods to analyze them. This article presents a visual search algorithm and user interface to support art historians to find objects and motifs in extensive datasets. Artistic image collections are subject to significant domain shifts induced by large variations in styles, artistic media, and materials. This poses new challenges to most computer vision models which are trained on photographs. To alleviate this problem, we introduce a multi-style feature aggregation that projects images into the same distribution, leading to more accurate and style-invariant search results. Our retrieval system is based on a voting procedure combined with fast nearest-neighbor search and enables finding and localizing motifs within an extensive image collection in seconds. The presented approach significantly improves the state-of-the-art in terms of accuracy and search time on various datasets and applies to large and inhomogeneous collections. In addition to the search algorithm, we introduce a user interface that allows art historians to apply our algorithm in practice. The interface enables users to search for single regions, multiple regions regarding different connection types and holds an interactive feedback system to improve retrieval results further. With our methodological contribution and easy-to-use user interface, this work manifests further progress towards a computer-based analysis of visual art.

摘要

在艺术史中,跨艺术品发现物体和主题具有重要意义,因为它有助于理解单个作品并分析它们之间的关系。数字化的出现产生了大量的数字艺术收藏,带来了许多研究机会。然而,手动方法不足以处理这么多的数据,因此需要适当的基于计算机的方法来对其进行分析。本文提出了一种视觉搜索算法和用户界面,以支持艺术史学家在广泛的数据集上寻找物体和主题。艺术图像集受到风格、艺术媒介和材料的巨大变化引起的显著领域转移的影响。这对大多数基于照片训练的计算机视觉模型提出了新的挑战。为了解决这个问题,我们引入了一种多风格特征聚合方法,将图像投影到相同的分布中,从而获得更准确和不变的搜索结果。我们的检索系统基于投票过程,结合快速最近邻搜索,能够在几秒钟内找到和定位广泛图像集中的主题。与各种数据集相比,所提出的方法在准确性和搜索时间方面显著提高了现有技术水平,并适用于大型和不均匀的收藏。除了搜索算法,我们还引入了一个用户界面,允许艺术史学家在实践中应用我们的算法。该界面允许用户搜索单个区域、不同连接类型的多个区域,并具有交互反馈系统,以进一步改进检索结果。通过我们的方法贡献和易于使用的用户界面,这项工作在基于计算机的视觉艺术分析方面取得了进一步的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/8612525/9aa654093378/pone.0259718.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验