Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
Nature. 2021 Dec;600(7887):153-157. doi: 10.1038/s41586-021-04140-8. Epub 2021 Nov 24.
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that regulates important functions in the central nervous system. The ALK gene is a hotspot for chromosomal translocation events that result in several fusion proteins that cause a variety of human malignancies. Somatic and germline gain-of-function mutations in ALK were identified in paediatric neuroblastoma. ALK is composed of an extracellular region (ECR), a single transmembrane helix and an intracellular tyrosine kinase domain. ALK is activated by the binding of ALKAL1 and ALKAL2 ligands to its ECR, but the lack of structural information for the ALK-ECR or for ALKAL ligands has limited our understanding of ALK activation. Here we used cryo-electron microscopy, nuclear magnetic resonance and X-ray crystallography to determine the atomic details of human ALK dimerization and activation by ALKAL1 and ALKAL2. Our data reveal a mechanism of RTK activation that allows dimerization by either dimeric (ALKAL2) or monomeric (ALKAL1) ligands. This mechanism is underpinned by an unusual architecture of the receptor-ligand complex. The ALK-ECR undergoes a pronounced ligand-induced rearrangement and adopts an orientation parallel to the membrane surface. This orientation is further stabilized by an interaction between the ligand and the membrane. Our findings highlight the diversity in RTK oligomerization and activation mechanisms.
间变性淋巴瘤激酶(ALK)是一种受体酪氨酸激酶(RTK),可调节中枢神经系统的重要功能。ALK 基因是染色体易位事件的热点,导致产生几种融合蛋白,引起多种人类恶性肿瘤。体细胞和种系获得性功能突变在小儿神经母细胞瘤中被鉴定出来。ALK 由细胞外区(ECR)、单个跨膜螺旋和细胞内酪氨酸激酶结构域组成。ALK 通过 ALKAL1 和 ALKAL2 配体与 ECR 的结合而被激活,但缺乏 ALK-ECR 或 ALKAL 配体的结构信息限制了我们对 ALK 激活的理解。在这里,我们使用冷冻电子显微镜、核磁共振和 X 射线晶体学来确定人类 ALK 二聚化和 ALKAL1 和 ALKAL2 激活的原子细节。我们的数据揭示了一种 RTK 激活机制,该机制允许通过二聚体(ALKAL2)或单体(ALKAL1)配体进行二聚化。这种机制的基础是受体-配体复合物的一种不寻常的结构。受体 ECR 经历明显的配体诱导重排,并采用与膜表面平行的取向。这种取向进一步通过配体与膜之间的相互作用得到稳定。我们的研究结果强调了 RTK 寡聚化和激活机制的多样性。