Suppr超能文献

基于深度学习的单个心肌细胞钙火花检测与事件分类

Calcium Spark Detection and Event-Based Classification of Single Cardiomyocyte Using Deep Learning.

作者信息

Yang Shengqi, Li Ran, Chen Jiliang, Li Zhen, Huang Zhangqin, Xie Wenjun

机构信息

Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing, China.

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

出版信息

Front Physiol. 2021 Nov 8;12:770051. doi: 10.3389/fphys.2021.770051. eCollection 2021.

Abstract

Ca sparks are the elementary Ca release events in cardiomyocytes, altered properties of which lead to impaired Ca handling and finally contribute to cardiac pathology under various diseases. Despite increasing use of machine-learning algorithms in deciphering the content of biological and medical data, Ca spark images and data are yet to be deeply learnt and analyzed. In the present study, we developed a deep residual convolutional neural network method to detect Ca sparks. Compared to traditional detection methods with arbitrarily defined thresholds to distinguish signals from noises, our new method detected more Ca sparks with lower amplitudes but similar spatiotemporal distributions, thereby indicating that our new algorithm detected many very weak events that are usually omitted when using traditional detection methods. Furthermore, we proposed an event-based logistic regression and binary classification model to classify single cardiomyocytes using Ca spark characteristics, which to date have generally been used only for simple statistical analyses and comparison between normal and diseased groups. Using this new detection algorithm and classification model, we succeeded in distinguishing wild type (WT) vs RyR2-R2474S cardiomyocytes with 100% accuracy, and vehicle vs isoprenaline-insulted WT cardiomyocytes with 95.6% accuracy. The model can be extended to judge whether a small number of cardiomyocytes (and so the whole heart) are under a specific cardiac disease. Thus, this study provides a novel and powerful approach for the research and application of calcium signaling in cardiac diseases.

摘要

钙火花是心肌细胞中基本的钙释放事件,其特性改变会导致钙处理受损,并最终在各种疾病状态下促成心脏病理变化。尽管机器学习算法在解读生物和医学数据内容方面的应用日益广泛,但钙火花图像和数据尚未得到深入的学习和分析。在本研究中,我们开发了一种深度残差卷积神经网络方法来检测钙火花。与使用任意定义阈值来区分信号与噪声的传统检测方法相比,我们的新方法检测到更多幅度较低但时空分布相似的钙火花,这表明我们的新算法检测到了许多使用传统检测方法时通常会遗漏的非常微弱的事件。此外,我们提出了一种基于事件的逻辑回归和二元分类模型,利用钙火花特征对单个心肌细胞进行分类,而这些特征迄今为止通常仅用于简单的统计分析以及正常组与患病组之间的比较。使用这种新的检测算法和分类模型,我们成功地以100%的准确率区分了野生型(WT)与RyR2 - R2474S心肌细胞,以及以95.6%的准确率区分了溶剂对照组与异丙肾上腺素损伤的WT心肌细胞。该模型可以扩展应用于判断少量心肌细胞(乃至整个心脏)是否处于特定的心脏疾病状态。因此,本研究为心脏疾病中钙信号的研究和应用提供了一种新颖且强大的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0681/8607692/445203cafa28/fphys-12-770051-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验