Akopov Georgiy, Hewage Nethmi W, Yox Philip, Viswanathan Gayatri, Lee Shannon J, Hulsebosch Liam P, Cady Sarah D, Paterson Alexander L, Perras Frédéric A, Xu Wenqian, Wu Kui, Mudryk Yaroslav, Kovnir Kirill
Ames Laboratory, U.S. Department of Energy Ames IA 50011 USA
Department of Chemistry, Iowa State University Ames IA 50011 USA.
Chem Sci. 2021 Oct 5;12(44):14718-14730. doi: 10.1039/d1sc03685h. eCollection 2021 Nov 17.
An innovative method of synthesis is reported for the large and diverse (RE)(TM) (Tt)S (RE = rare-earth, TM = transition metals, Tt = Si, Ge, and Sn) family of compounds (∼1000 members, ∼325 contain Si), crystallizing in the noncentrosymmetric, chiral, and polar 6 space group. Traditional synthesis of such phases involves the annealing of elements or binary sulfides at elevated temperatures. The atomic mixing of refractory components technique, presented here, allows the synthesis of known members and vastly expands the family to nearly the entire transition metal block, including 3d, 4d, and 5d TMs with oxidation states ranging from 1+ to 4+. Arc-melting of the RE, TM, and tetrel elements of choice forms an atomically-mixed precursor, which readily reacts with sulfur providing bulk powders and large single crystals of the target quaternary sulfides. Detailed and experiments show the mechanism of formation, which involves multiphase binary sulfide intermediates. Crystal structures and metal oxidation states were corroborated by a combination of single crystal X-ray diffraction, elemental analysis, EPR, NMR, and SQUID magnetometry. The potential of La(TM) (Tt)S compounds for non-linear optical applications was also demonstrated.
报道了一种创新的合成方法,用于合成庞大且多样的(RE)(TM)(Tt)S化合物家族(RE = 稀土,TM = 过渡金属,Tt = Si、Ge和Sn)(约1000个成员,约325个含Si),这些化合物结晶于非中心对称、手性和极性的6空间群中。传统合成此类相需要在高温下对元素或二元硫化物进行退火处理。本文介绍的难熔成分原子混合技术,不仅能够合成已知成员,还极大地扩展了该家族,几乎涵盖了整个过渡金属区,包括氧化态从1+到4+的3d、4d和5d过渡金属。将所选的稀土、过渡金属和四价元素进行电弧熔炼,形成原子混合前驱体,该前驱体可与硫轻松反应,生成目标四元硫化物的块状粉末和大尺寸单晶。详细的实验揭示了其形成机制,该机制涉及多相二元硫化物中间体。通过单晶X射线衍射、元素分析、电子顺磁共振、核磁共振和超导量子干涉仪磁力测量等多种方法相结合,证实了晶体结构和金属氧化态。同时还展示了La(TM)(Tt)S化合物在非线性光学应用方面的潜力。