Leube Bernhard T, Collins Christopher M, Daniels Luke M, Duff Benjamin B, Dang Yun, Chen Ruiyong, Gaultois Michael W, Manning Troy D, Blanc Frédéric, Dyer Matthew S, Claridge John B, Rosseinsky Matthew J
Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kindgom.
Stephenson Institute for Renewable Energy, University of Liverpool, Peach Street, L69 7ZF Liverpool, United Kindgom.
Chem Mater. 2022 May 10;34(9):4073-4087. doi: 10.1021/acs.chemmater.2c00320. Epub 2022 Apr 18.
A tetragonal argyrodite with >7 mobile cations, LiZnSiS, is experimentally realized for the first time through solid state synthesis and exploration of the Li-Zn-Si-S phase diagram. The crystal structure of LiZnSiS was solved from high-resolution X-ray and neutron powder diffraction data and supported by solid-state NMR. LiZnSiS adopts a tetragonal 4 structure at room temperature with ordered Li and Zn positions and undergoes a transition above 411.1 K to a higher symmetry disordered 43 structure more typical of Li-containing argyrodites. Simultaneous occupation of four types of Li site (T5, T5a, T2, T4) at high temperature and five types of Li site (T5, T2, T4, T1, and a new trigonal planar T2a position) at room temperature is observed. This combination of sites forms interconnected Li pathways driven by the incorporation of Zn into the Li sublattice and enables a range of possible jump processes. Zn occupies the 48 T5 site in the high-temperature 43 structure, and a unique ordering pattern emerges in which only a subset of these T5 sites are occupied at room temperature in 4 LiZnSiS. The ionic conductivity, examined via AC impedance spectroscopy and VT-NMR, is 1.0(2) × 10 S cm at room temperature and 4.3(4) × 10 S cm at 503 K. The transition between the ordered 4 and disordered 43 structures is associated with a dramatic decrease in activation energy to 0.34(1) eV above 411 K. The incorporation of a small amount of Zn exercises dramatic control of Li order in LiZnSiS yielding a previously unseen distribution of Li sites, expanding our understanding of structure-property relationships in argyrodite materials.
通过固态合成和对Li-Zn-Si-S相图的探索,首次通过实验实现了一种具有大于7个可移动阳离子的四方硫银锗矿LiZnSiS。LiZnSiS的晶体结构由高分辨率X射线和中子粉末衍射数据解析,并得到固态核磁共振的支持。LiZnSiS在室温下采用具有有序Li和Zn位置的四方I4结构,并在411.1 K以上转变为更高对称性的无序I43结构,这在含锂硫银锗矿中更为典型。观察到在高温下同时占据四种类型的Li位点(T5、T5a、T2、T4),在室温下同时占据五种类型的Li位点(T5、T2、T4、T1和一个新的三角平面T2a位置)。这些位点的组合形成了由Zn掺入Li亚晶格驱动的相互连接的Li通道,并实现了一系列可能的跳跃过程。Zn在高温I43结构中占据48个T5位点,并且出现了一种独特的有序模式,其中在四方LiZnSiS中,这些T5位点中只有一部分在室温下被占据。通过交流阻抗谱和变温核磁共振检测的离子电导率在室温下为1.0(2)×10⁻⁴ S cm⁻¹,在503 K时为4.3(4)×10⁻⁴ S cm⁻¹。有序I4和无序I43结构之间的转变与活化能在411 K以上急剧降至0.34(1) eV有关。少量Zn的掺入对LiZnSiS中的Li有序性进行了显著控制,产生了以前未见的Li位点分布,扩展了我们对硫银锗矿材料结构-性能关系的理解。