Suppr超能文献

通过分子动力学+机器学习进行环肽的结构预测

Structure prediction of cyclic peptides by molecular dynamics + machine learning.

作者信息

Miao Jiayuan, Descoteaux Marc L, Lin Yu-Shan

机构信息

Department of Chemistry, Tufts University Medford Massachusetts 02155 USA

出版信息

Chem Sci. 2021 Nov 5;12(44):14927-14936. doi: 10.1039/d1sc05562c. eCollection 2021 Nov 17.

Abstract

Recent computational methods have made strides in discovering well-structured cyclic peptides that preferentially populate a single conformation. However, many successful cyclic-peptide therapeutics adopt multiple conformations in solution. In fact, the chameleonic properties of some cyclic peptides are likely responsible for their high cell membrane permeability. Thus, we require the ability to predict complete structural ensembles for cyclic peptides, including the majority of cyclic peptides that have broad structural ensembles, to significantly improve our ability to rationally design cyclic-peptide therapeutics. Here, we introduce the idea of using molecular dynamics simulation results to train machine learning models to enable efficient structure prediction for cyclic peptides. Using molecular dynamics simulation results for several hundred cyclic pentapeptides as the training datasets, we developed machine-learning models that can provide molecular dynamics simulation-quality predictions of structural ensembles for all the hundreds of thousands of sequences in the entire sequence space. The prediction for each individual cyclic peptide can be made using less than 1 second of computation time. Even for the most challenging classes of poorly structured cyclic peptides with broad conformational ensembles, our predictions were similar to those one would normally obtain only after running multiple days of explicit-solvent molecular dynamics simulations. The resulting method, termed StrEAMM (Structural Ensembles Achieved by Molecular Dynamics and Machine Learning), is the first technique capable of efficiently predicting complete structural ensembles of cyclic peptides without relying on additional molecular dynamics simulations, constituting a seven-order-of-magnitude improvement in speed while retaining the same accuracy as explicit-solvent simulations.

摘要

最近的计算方法在发现优先占据单一构象的结构良好的环肽方面取得了进展。然而,许多成功的环肽疗法在溶液中采用多种构象。事实上,一些环肽的变色龙特性可能是其高细胞膜通透性的原因。因此,我们需要能够预测环肽的完整结构集合,包括大多数具有广泛结构集合的环肽,以显著提高我们合理设计环肽疗法的能力。在这里,我们引入了利用分子动力学模拟结果训练机器学习模型的想法,以实现对环肽的高效结构预测。使用数百种环五肽的分子动力学模拟结果作为训练数据集,我们开发了机器学习模型,该模型可以为整个序列空间中数十万序列的结构集合提供分子动力学模拟质量的预测。对每个单独的环肽进行预测所需的计算时间不到1秒。即使对于具有广泛构象集合的结构最差的环肽这一最具挑战性的类别,我们的预测也与通常只有在运行多天的显式溶剂分子动力学模拟后才能获得的预测相似。由此产生的方法称为StrEAMM(通过分子动力学和机器学习实现的结构集合),是第一种能够在不依赖额外分子动力学模拟的情况下有效预测环肽完整结构集合的技术,在速度上提高了七个数量级,同时保持了与显式溶剂模拟相同的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9020/8597836/eb030a3cbf35/d1sc05562c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验